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Abstract—The advancement of high-speed and high-power
Light-Emitting Diodes (LED) has paved the way for the
widespread implementation of Visible Light Positioning (VLP)
and Optical Wireless Positioning (OWP). Time Difference of
Arrival (TDoA) techniques do not require synchronism between
emitters and receivers. However, in TDoA, accurate time differ-
ence estimation becomes the key to accurate positioning. Prior
work in OWP often neglects Non-Line-of-Sight (NLoS) contribu-
tions when modeling the scene response function. In contrast, we
adopt an NLoS-aware model and solve the estimation problem
in frequency domain via a fast and robust spectral estimation
method. Leveraging both ideal model-based simulations and
realistic raytracing software, we demonstrate that our approach
allows for time difference estimation with machine precision, in
the absence of secondary reflections. In the NLoS scenario, our
method yields a reduction of the 95th percentile positioning error
from 9.5 cm to 5.5 cm over Gaussian pulse fitting in a 1m ×
1m experimental frame. Furthermore, our method achieves a
significantly higher estimation rate, making it highly suitable for
real-time applications.

Index Terms—Optical Wireless Positioning, Visible Light Po-
sitioning, Time Difference of Arrival, Parametric Spectral Esti-
mation

I. INTRODUCTION

Indoor positioning technology has seen widespread adoption
across various industries over the past few years and has
become increasingly significant in our daily lives. Positioning
technology that employs a light source in the Near-Infrared
(NIR) wavelength region or visible light is known as Optical
Wireless Positioning (OWP) [1], [2], while systems based
specifically on visible light are termed Visible Light Position-
ing (VLP) [3]–[5].

Several techniques are employed in VLP systems. Pri-
mary trilateration methods are based on the Time of Arrival
(ToA) [6], Time Difference of Arrival (TDoA) [7], and the
Received Signal Strength (RSS) algorithms [8]. In addition,
triangulation techniques, such as the Angle-of-Arrival (AOA)-
based algorithm and image sensors (IS)-based methods [9],
[10], are also common. While Line-of-Sight (LoS) is the
primary signal propagation mode in VLP, Non-Line-of-Sight
(NLoS) effects significantly impact accuracy, particularly in
complex indoor environments [5]. The effect of multipath
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reflections on the performance of indoor VLP systems has
been explored in [11]. Additionally, in [2], Keskin et al.
successfully replaced Radio Frequency (RF)-based positioning
systems with VLP, but also acknowledged that NLoS must be
taken into account in the design of the VLP system. Zhou et al.
reveal the performance limitations of VLP systems in NLoS
propagation environments through Fisher information analysis
in [12]. Furthermore, in [13], a comprehensive analysis of
LED-based VLP systems is presented in terms of accuracy,
complexity, cost, and commercial feasibility, highlighting that
low-accuracy positioning at the edges or corners deserves to
be investigated.

NLoS is typically regarded as a form of Multipath Inter-
ference (MPI), a major challenge in Time-of-Flight (ToF)
systems. In this realm, parametric spectral estimation has
shown success in retrieving multiple paths. In [14], a novel
framework called Simultaneous Phase Unwrapping and Mul-
tipath Interference Cancellation (SPUMIC) was introduced,
which addresses both phase unwrapping (PUW) and multipath
interference cancellation (MIC) using spectral estimation tech-
niques. In SPUMIC, MPI is modeled as a sum of a direct (LoS)
and an indirect (NLoS) path. To tackle MPI, Fuchs proposed
a model for estimating and compensating for MPI in [15],
assuming that all reflective surfaces behave as Lambertian radi-
ators. This model simulates interference to correct ToF camera
measurements. Although this approach improves accuracy, its
high computational demands make it unsuitable for real-time
applications. Bhandari et al. developed a more computationally
efficient, closed-form, non-iterative solution based on spectral
estimation theory. Their approach requires 2K+1 frequency
measurements to recover depth and amplitude information for
each of the K paths. The method provides a practical, real-
time solution for MPI correction without requiring iterative
optimization, making it applicable for real-time scenarios [16],
[17]. Heredia Conde et al. proposed a fast multipath estimation
approach for the Continuous-Wave(CW) ToF camera based
on the matrix pencil method [18]. Harmonic distortions in
the acquired measurements can degrade estimation accuracy
and lead to failure. Superior performance can be achieved
by combining parametric spectral estimation with harmonic
cancellation techniques in CW-ToF, effectively improving mul-
tipath separation and robustness [18].

The limited research on the effects of NLoS in VLP,
combined with the notable success of parametric spectral
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estimation methods in retrieving multipath information in ToF
applications, motivates this study. Our approach eliminates the
need for detailed scene modeling, making it more adaptable
and robust in diverse environments. Our contributions include:

1) Closed-form-solution instead of time-domain peak de-
tection: Unlike classical Gaussian pulse fitting (GP) or other
approaches in time domain, our work applies frequency-
domain parametric spectral estimation to retrieve LoS and
NLoS components, significantly enhancing TDoA localization
accuracy.

2) Theoretical and practical integration: Our work com-
bines theoretical rigor with experimental validation, using
both mathematical modeling (Fig.1) and raytracing simulations
(Fig.3). This dual approach not only enhances the robustness
of our findings but also provides actionable insights for real-
world implementation. The experimental results (Fig.4) are
obtained in a 1m × 1m experimental frame.

3) Filling a research gap: While parametric spectral es-
timation is widely used in ToF-based systems, its potential
for mitigating MPI in TDoA-based localization, especially in
OWP systems, remains largely unexplored.

II. MATHEMATICAL MODEL

A. A General Sensing Model

In a general system, the Scene Response Function (SRF) to
modulated light h(t), can be interpreted as a system’s response
to stimuli. This is often expressed using convolution:

r(t) = (s ∗ h)(t) =
∫ ∞

−∞
s(τ) · h(t− τ) dτ, (1)

where s(t) and r(t) are the transmitted and received signals
respectively. In many prior works, only the LoS contribution
is considered in the VLP scenario, while the NLoS paths are
often neglected. When K propagation paths are considered, the
SRF can be modeled as a weighted sum of shifted Dirac delta
functions [19]:

h(t) =

K−1∑
k=0

Γkδ (t− tk) , 0 ≤ tk < T, (2)

where Γk and tk represent the amplitude and the time stamp
of the kth path respectively. Here, T is the length of the
observation period.

Convolution in the time domain is equivalent to element-
wise product in the Fourier domain, meaning that equation
(1) can be expressed as r̂(ω) = ĥ(ω) · ŝ(ω) in the Fourier
domain. Due to physical limitations, almost all optical systems
are approximately bandlimited [17], [19]. The bandlimited
approximation with bandwidth Ω will be used. Fourier samples
of a train of Dirac delta functions can be modeled as a sum
of cisoids [19]. For any frequency ω ∈ Ω, h(t) in (2) in the
Fourier domain can be represented as:

ĥ(ω) =
r̂(ω)

ŝ(ω)
=

K−1∑
k=0

Γke
jωtk (3)

We assume that m uniform frequency measurements
y(ωi) = r̂(ωi) + n̂i are obtained, where n̂i is the Gaussian
noise in the ith measurement and n̂i= F(ni), F denotes
Fourier transform. Due to the maximal incoherence between
the Fourier basis and Dirac delta functions, the direct ac-
quisition of Fourier samples constitutes an optimal sampling
procedure. The fundamental frequency is defined by ω0 = 2π

T .
The sensing model hence follows:

˜̂
h (ωi) =

y(ωi)

ŝ (ωi)
, y(ωi) = ŝ (ωi)

K−1∑
k=0

Γke
jωitk + n̂i with :

ωi = iω0, ωi ∈ Ω, i ∈

{
−
⌈
m− 1

2

⌉
, . . . , 0, . . . ,

⌊
m− 1

2

⌋}
(4)

To retrieve K paths, {Γk, tk}Kk=1, in (4), at least m ≥ 2K +1
measurements are required. Prony’s method can be employed
to address this problem [20]. The matrix pencil method offers
a fast and robust closed-form estimate of {Γk, tk}Kk=1 [22].
The oversampling factor is defined by q = |m|−1

2K , q ∈ N.

B. TDoA Via Parametric Spectral Estimation
Given the known positions of n receivers, the simplest NLoS

scenario assumes two propagation paths K=2. The time of
arrival for NLoS is modeled as:

tNLoS,n,ref = tLoS,n,ref +∆td,n,ref , n ∈ [1, 2, 3, ...] (5)

where tNLoS,n,ref and tLoS,n,ref denote the ToA values of the
NLoS and LoS components relative to a reference signal,
which can be acquired in a calibration experiment. The term
∆td,n,ref represents the time difference between these paths.
The TDoA method relies on the time difference between the
received and reference signals. Applying the Fourier transform
to the received signal, r̂NLoS(ω), and normalizing it by the
Fourier transform of the convolution kernel (reference signal,
r̂ref(ω)), results in the Fourier-domain deconvolved signal:

˜̂
hn,ref (ω) =

r̂NLoS,n(ω)

r̂ref(ω)
(6)

The right-hand side can be expressed as a sum of sinusoidal
components (complex exponentials), which can be efficiently
solved using the Matrix Pencil Method [21], [22]. We define
M as the matrix pencil algorithm. The estimated time and
amplitude values are given by:{

tn,ref,k,Γn,ref,k

}K

k=1
= M(

˜̂
hn,ref (ω) ;K,T, L,Ω) (7)

Where K is the number of paths, T is the signal period, L rep-
resents the pencil parameter, and Ω represents the bandwidth
of bandlimited approximation. The path P1 (most prominent)
is considered as the LoS path and path P2 as the sum of NLoS
paths. The ToA estimates are:

tn,ref,LoS = tn,ref,1, tn,ref,NLoS = tn,ref,2 (8)

The time difference for different receivers ∆tRx,u,v(u, v ∈ n,
where u ̸= v) is then:

∆tRx,u,v = tu,ref,LoS − tv,ref,LoS (9)
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By leveraging this model and the matrix pencil algorithm
(M), we can disentangle the LoS component in the presence
of NLoS contributions. Equation (9) further allows LoS-TDoA
computation for different received signals relative to the same
reference signal. This procedure avoids errors due to NLoS
contributions in the TDoA estimation, thereby improving
localization accuracy and bringing it closer to the precision
achieved under LoS conditions.

III. IDEAL MODEL-BASED SIMULATION AND REALISTIC
RAYTRACING SOFTWARE SIMULATION

A. Ideal Model-based Simulation

In practice, the received signal typically exhibits an over-
shoot because of the contribution of the higher-order filter
response [23]. However, for simplicity in simulation, both
the transmitted and received signals are modeled as Gaussian
pulses, as usually done in Light Detection And Ranging
(LiDAR) systems [24].

In the simulation, the transmitted Gaussian pulse, sG(t), and
the received pulse train, rG(t), are modeled as follows:

sG(t) = Ae−
(t−t0)2

2σ2 , rG(t) =

K−1∑
k=0

ΓksG(t− tk), (10)

where A is the amplitude of the pulse, t0 is a reference time
(center of the pulse), σ is the pulse width, K is the number
of the received paths, Γk and tk denote the amplitude and the
time shift of the kth path respectively.

For the simulation, we consider a signal with a period
T=20 ns and K=10 paths. The randomly generated parameters
{Γk, tk}Kk=1 are then estimated by the matrix pencil method.
The reconstructed signal and the retrieved parameters are
shown in Fig.1 and Table I, respectively. In the absence of
noise, the proposed approach enables time difference estima-
tion with machine precision.

Additionally, we investigated the effect of noise level on the
estimation error of time, tk, amplitude, Γk, and reconstructed
signal, rG, under different oversampling factors q. The results
are presented in Fig. 2. As the Signal-to-Noise Ratio (SNR)
increases, the Mean Squared Error (MSE) decreases linearly,
indicating that the Cramér-Rao Bound (CRB) is approached.

TABLE I
MSE OF THE VECTORS OF RECONSTRUCTED TIME LOCATIONS AND

AMPLITUDES, AND OF THE RECONSTRUCTED SIGNALS OVER 100 NOISE
REALIZATIONS IN FIG.1 (K = 10).

SNR [dB] MSE
{
t̃k

}K

k=1
MSE

{
Γ̃k

}K

k=1
MSE {r̃G}

20 110.86 7.86×10−1 4.71×10−2

40 3.75×10−4 2.8×10−3 4.37×10−4

60 3.07 ×10 −6 2.43×10−5 4.34×10−6

∞ 4.19 ×10 −28 1.41×10−27 9.72×10−28

B. Realistic Raytracing Software Simulation

In order to assess the impact of NLoS contributions in the
VLP system, for example, due to walls, the SRF was first
simulated in raytracing software (TracePro) in a real scenario
with diffuse reflecting walls. The receivers are positioned at
a height of 124 cm in a 1m×1m square in correspondence
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Fig. 1. Observed and reconstructed signal and the Fourier spectrum. (a) 10
randomly-generated times and amplitudes (blue stems) are utilized to model
the observed signal (blue line). The times and amplitudes obtained using our
method and the reconstructed signals are represented as red stems and red
dashed lines, respectively. (b) Fourier spectrum and the limited bandwidth Ω
in red dashed line.
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Fig. 2. MSE of reconstructed time (a), amplitude (b), and signal (c) versus
SNR for different oversampling factors q ∈ [1, 5]. The original set of
parameters {Γk, tk}Kk=1 was the same used in Fig. 1, with K=10. The solid
lines are mean computed over 100 noise realizations, while the shaded areas
indicate the range between the mean minus and plus two times standard
deviations.

with the measurement setup described in [23]. The simulation
assumes a 1.2m×1.2m room with white reflective walls, thus
10 cm wider than the positions of the receivers at each side
of the square. The walls are modeled as a Lambertian diffuse
reflecting surface with 80% reflectance, a representative value
for typical white paint [25], [26]. The radiation pattern of the
transmitter is applied in the simulation as provided by the
manufacturer and is used to simulate the propagation of 106

rays, employing importance sampling to the target receiver
from both the laser source and reflections at the walls. The
transmitter is positioned in the center of the room and the
SRF is simulated for one of the receivers at the corners of the
room. Instead of generating ten random paths, as in Section
III-A, with the help of the raytracing software, we successfully
simulated the SRF of the real scenario and selected the first
ten paths for testing, where K=1 is the LoS.

The results of retrieving two paths and ten paths using our
method are shown in Fig. 3. For the case with two paths,
the second path is considered to be the sum of the NLoS
components and is represented as a red star stem in Fig.
3(a). In Fig. 3(b), all ten stems are accurately depicted. In the
absence of noise, our proposed method effectively eliminates
the effects of NLoS in the TDoA system, and allows also for
accurate reconstruction of the received signals in the LoS-only
scenario. Additionally, we observe that, as the number of paths
K retrieved using our method approaches the true number of
paths, the accuracy of the results improves.
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Fig. 3. Simulated SRF with ten paths (blue stems), when the transmitter
is positioned in the center of the rooms. Using our method to retrieve two
paths (a) and all ten paths (b) reconstructs the signal with the depicted
time and amplitude. The reconstructed signal is represented as a red dashed
line. When tracking only two paths (a), a dark green box represents the
estimated LoS contribution, while a red star denotes the sum of the NLoS
contributions. When tracking ten paths (b), the dark green box again represents
the LoS contribution, but nine red stars are used to depict the individual NLoS
components.

IV. EXPERIMENTAL SETUP AND RESULTS

The experimental setup is at a range of 1.24m with four
photodetectors mounted on a frame of size 1m×1m. The
experimental setup and its specifications are described in detail
in [23]. The 441 test points are distributed uniformly over a
50 cm×50 cm square grid. In [23], the received signals are
modeled as Gaussian pulses, and the time t0 is retrieved
by GP. In order to simplify the calibration process, the
measurements when the transmitter is at the center are used
to compensate for all measurement points. The same dataset
is used in our proposed method. Unlike the ideal simulation
scenario, the practical implementation of our method for
retrieving NLoS paths requires careful consideration due to
the unknown number of paths K and the device specifications.
The photodiode used as a receiver has an analog bandwidth of
only 150MHz, which imposes a significant limitation. In our
experiments, the signals are collected within a period T=20 ns,
corresponding to a fundamental frequency f0= 1

T =50MHz.
The maximum frequency used for bandlimited approximation
cannot exceed the photodiode’s maximum analog bandwidth
of 150MHz, which limits the number of uniform frequency
measurements to m=7. Consequently, at most K=3 can be
retrieved in the experimental framework. In many test points,
K=3 yielded unrealistic negative amplitudes (Γ). Therefore we
only consider the case K=2 for the whole experiment.

When Rx1 is taken as the reference signal, the calibration
results calculated by the GP method [23] and our proposed
method (8) are nearly identical. This demonstrates that the
sum of the contribution from NLoS paths can be estimated
via the parametric spectral estimation method, even when the
number of paths K is unknown, following a similar approach
to analyzing the MPI of ToF cameras to that in [14]. The
calibration measurement results obtained from both methods
are presented in Table II.

To estimate the effect of NLoS contributions, two white-
boards with a width of 55 cm are placed in the corner close
to Rx4. The experimental setup is illustrated in Fig. (14)
of [23]. Data from the same 441 test points are collected
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Fig. 4. TDoA Positioning results and the P95 Positioning error. (a) Compar-
ison of the TDoA results using our method with the test points in the case of
NLoS. The green points indicate the failure of parametric spectral estimation
due to the distortion of the signal at these test points. (b) Cumulative
distribution function of the positioning error comparing our method and the
GP method for the LoS case and the NLoS case.

TABLE II
COMPARISON OF CALIBRATION

MEASUREMENT RESULTS AT THE
CENTER OF THE GRID.

TDoA Ours [ps] GP [ps]
Rx2-Rx1 147.7 148.1
Rx3-Rx1 151.8 155.4
Rx4-Rx1 186.0 188.4

TABLE III
AVERAGE RUNTIME COMPARISON

OVER 100 RUNS FOR 441 SAMPLES
IN LOS AND NLOS SCENARIOS.

Method LoS NLoS
Ours [ms]) 4.6 5.4
GP [ms] 26.6 34.1
Speed-up 5.7x 6.3x

under the NLoS experimental setup. By inputting the collected
reference data and received data from the NLoS scenario into
(6)-(9), we successfully eliminate the NLoS contribution to
localization, approximating the NLoS localization accuracy to
that of the LoS case. However, at specific receiver locations,
the received signal exhibits distortion due to overshoot and
time-domain cropping, resulting in the failure of paramet-
ric spectral estimation, as indicated by the green points in
Fig.4(a). In Section III-A we note that the overshoot arises
from the contribution of higher-order filter responses in prac-
tical systems, deviating from the ideal Gaussian pulse model
used in simulations, particularly in the NLoS scenarios where
MPI further complicates the waveform. When the acquisition
time is too short to fully capture the overshoot and the
NLoS components, the collected signal becomes incomplete,
truncating critical NLoS components or their tails. This time-
domain truncation disrupts the Fourier-domain analysis based
on the matrix pencil method. Importantly, this distortion is
not a fundamental limitation of our method, which performs
robustly under ideal conditions (in Section III-A), but rather a
consequence of constraints in the data acquisition campaign,
specifically resulting from the combination of overshoot and
insufficient acquisition time. By extending the signal duration
and using higher-performance experimental devices, the im-
pact of distortion can be mitigated, improving the accuracy
and robustness of the estimation.

The cumulative distribution function of the localization
error, shown in Fig. 4, illustrates the positioning performance
of TDoA in the LoS and NLoS scenarios attained employing
the GP method and our method, respectively. Our method
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achieves a P95 value of 5.3 cm, closely matching the P95
value of 5.4 cm obtained using the GP method. However, in the
case of NLoS, our method is able to eliminate the aggregated
effect of NLoS, improving the P95 result from 9.5 cm to
5.5 cm, which verifies the superiority of our algorithm in
real scenarios. In addition to accuracy improvements, we also
compared the computational efficiency of the GP method and
our proposed method. The average runtime over 441 test
positions and 100 runs per position in both LoS and NLoS
scenarios is shown in Table III. The estimation rate, defined
as the number of position estimates computed per second, is a
key metric for evaluating real-time performance. Our method
achieves an estimation rate of approximately 217Hz in the
LoS scenarios and 185Hz in the NLoS scenarios, significantly
outperforming the GP method, with a 5.7 times speed-up and
6.3 times, respectively.

V. CONCLUSION

In this paper, we investigate the impact of NLoS con-
tributions on a TDoA-OWP system. Contrary to the clas-
sical waveform fitting methods that analyze signals in the
time domain, our approach utilizes a non-iterative parametric
spectral estimation method in Fourier domain to account for
NLoS contributions, thereby enhancing localization accuracy
by mitigating NLoS effects in the TDoA measurements. Ideal
simulations and realistic raytracing software demonstrate that
our proposed method achieves machine precision without the
influence of secondary reflections. In practical NLoS exper-
imental scenarios, our method reduces the P95 positioning
error from 9.5 cm to 5.5 cm, representing a 42% improvement
over the GP method. Furthermore, our method exhibited a
significantly higher estimation rate, outperforming the GP
method by 5.7 times in the LoS scenarios and 6.3 times in
the NLoS scenarios. This combination of improved accuracy
and computational efficiency makes our approach highly suit-
able for real-time position estimation in indoor environments.
Moreover, the enhanced estimation rate is key for autonomous
navigation, enabling rapid and reliable position updates essen-
tial for AGVs, mobile robots, and other real-time localization
applications.
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ence (PHM-Besançon), 2020, pp. 360-365.

[4] S. De Lausnay, L. De Strycker, J. -P. Goemaere, B. Nauwelaers and
N. Stevens, “A survey on multiple access Visible Light Positioning,”
2016 IEEE International Conference on Emerging Technologies and
Innovative Business Practices for the Transformation of Societies (Emer-
giTech), Balaclava, Mauritius, 2016.

[5] Z. Liu, N. Stevens and M. Heredia Conde, “Visible Light Positioning
Using Arrays of Time-of-Flight Pixels,” in 2022 IEEE Sensors, Dallas,
TX, USA, 2022, pp. 1-4.

[6] B. Kazimieras, and K. Borre, “Ubiquitous WiFi/GNSS positioning
system-TOA based distance estimation,” in Proceedings of the 21st
International Technical Meeting of the Satellite Division of The Institute
of Navigation (ION GNSS 2008), 2008, pp. 1773-1779.

[7] R. W. Boyd, “Location system for wireless local area network (WLAN)
using RSSI and time difference of arrival (TDoA) processing,” U.S.
Patent No. 7,899,006. 1 Mar. 2011.

[8] Z. Hengzhou, L. Fuqiang and Z. Hao, “Indoor Location Service Based
on Fingerprinting and Distance Relative Attenuation Model,” 2014 Sixth
International Conference on Measuring Technology and Mechatronics
Automation, Zhangjiajie, China, 2014, pp. 341-344.

[9] M. S. Rahman, M. M. Haque and Ki-Doo Kim, “High precision indoor
positioning using lighting LED and image sensor,” 14th International
Conference on Computer and Information Technology (ICCIT 2011),
Dhaka, Bangladesh, 2011, pp. 309-314.

[10] K. Aalimahmoodi, A. Gholami and Z. Ghassemlooy, “An Image Sensor
Based Indoor VLP System,” 2018 9th International Symposium on
Telecommunications (IST), Tehran, Iran, 2018, pp. 371-374.

[11] W. Gu, M. Aminikashani, P. Deng and M. Kavehrad, “Impact of mul-
tipath reflections on the performance of indoor visible light positioning
systems,” in J. Lightw. Technol., vol. 34, no. 10, pp. 2578-2587, May
2016.

[12] B. Zhou, Y. Zhuang and Y. Cao, “On the Performance Gain of Harness-
ing Non-Line-of-Sight Propagation for Visible Light-Based Positioning,”
in IEEE Transactions on Wireless Communications, vol. 19, no. 7, pp.
4863-4878, July 2020.

[13] Y. Zhuang et al., “A Survey of Positioning Systems Using Visible LED
Lights,” in IEEE Communications Surveys and Tutorials, vol. 20, no. 3,
pp. 1963-1988, third quarter 2018.

[14] A. Kirmani, A. Benedetti and P. A. Chou, “SPUMIC: Simultaneous
phase unwrapping and multipath interference cancellation in time-
of-flight cameras using spectral methods,” 2013 IEEE International
Conference on Multimedia and Expo (ICME), San Jose, CA, USA, 2013,
pp. 1-6.

[15] S. Fuchs, “Multipath Interference Compensation in Time-of-Flight Cam-
era Images,” 2010 20th International Conference on Pattern Recognition,
Istanbul, Turkey, 2010.

[16] A. Bhandari, F. Micha, I. Shahram, R. Christoph, S. Mirko, and
R. Ramesh, “Resolving multipath interference in kinect: An inverse
problem approach.” In SENSORS, 2014 IEEE, pp. 614-617. IEEE, 2014.

[17] A. Bhandari, A. M. Wallace, and R. Raskar, “Super-resolved time-
of-flight sensing via FRI sampling theory,” 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, 2016.

[18] M. Heredia Conde, T. Kerstein, B. Buxbaum, and O. Loffeld, “Fast
multipath estimation for PMD sensors,” in 5th International Workshop
on Compressed Sensing Theory and its Applications to Radar, Sonar,
and Remote Sensing (CoSeRa 2018), 2018.

[19] S. C. Sánchez El Ryfaie and M. Heredia Conde, “Breaking the Limits of
Gamma-Ray Spectrometry by Exploiting Sparsity of Photon Arrivals,”
2020 28th European Signal Processing Conference (EUSIPCO), Ams-
terdam, Netherlands, 2021, pp. 2075-2079.

[20] P. Stoica and R.L. Moses, “Introduction to Spectral Analysis,” Prentice
Hall, 1997.

[21] A. Bhandari, M. Heredia Conde and O. Loffeld, “One-Bit Time-
Resolved Imaging,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, no. 7, pp. 1630-1641, 1 July 2020.

[22] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating param-
eters of exponentially damped/undamped sinusoids in noise,” in IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no.
5, pp. 814-824, May 1990.

[23] J. D. Bruycker, J. Audenaert, S. R. Teli, S. Zvanovec, M. Heredia
Conde, L. D. Strycker, N. Stevens. “An Experimental Testbed for the
Performance Evaluation of Optical Time Difference of Arrival based
Indoor Positioning.” Journal of Lightwave Technology. 2024, pp. 1-10.

[24] X. Li, H. Wang, B. Yang, J. Huyan, L. Xu, “Influence of Time-Pickoff
Circuit Parameters on LiDAR Range Precision.” Sensors 2017, 17, 2369.

[25] J. A. Sanderson, “The Diffuse Spectral Reflectance of Paints in the Near
Infra-Red,” J. Opt. Soc. Am., vol. 37, no. 10, pp. 771–777, Oct 1947.

[26] M. Rea and I. E. S. of North America, “The IESNA Lighting Handbook:
Reference and Application,” ser. IESNA LIGHTING HANDBOOK.
Illuminating Engineering Society of North America, 2000.

2141


