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Abstract—Magnetic field-based train localization uses distor-
tions of the Earth magnetic field caused by magnetic material in
the vicinity of the tracks. From the distortions, a position estimate
can be obtained by comparing magnetometer measurements to a
map of the magnetic field. The comparison to the map requires
the calibration of the train-mounted magnetometer. However,
calibration is difficult because common calibration techniques
require a rotation of the magnetometer and the platform it
is mounted on. Thus, in this paper we propose a maximum
likelihood (ML) snapshot estimator that simultaneously estimates
the calibration parameters and the train position. The snap-
shot estimator reduces the ML estimation problem to a one-
dimensional optimization problem that can be solved efficiently.
To show the feasibility of the approach, an evaluation is carried
out based on measurements recorded with a train driving through
Berlin.

I. INTRODUCTION

The automation of railway traffic requires accurate absolute
positions of all trains in the track network. These positions
must be provided also in environments where global naviga-
tion satellite system (GNSS) signals are blocked or degraded,
such as tunnels and urban canyons. In this paper, we therefore
propose a position estimator that can provide this information
also in GNSS-denied environments.

The proposed position estimator is based on local distortions
of the Earth magnetic field. The distortions are a result of the
interaction of the Earth magnetic field with magnetic material
in the vicinity of railway lines. Most of this material is steel
found in the rails, the signal poles, and in reinforced concrete
in close by buildings. Since the material is static, also the
caused distortions are static, allowing us to build a digital
map of the magnetic field, where the map is a function that
returns for each position the corresponding magnetic field. An
example for a magnetic map of a ~8km long railway track
is shown in Fig. 1.

The idea of magnetic localization is not new and its feasibil-
ity has been shown in indoor environments [1], [2], on roads
[3], in the air [4], and for railways [5]. For magnetic localiza-
tion, magnetometer calibration is crucial because otherwise
the measured magnetic field cannot be matched accurately
to the map and each train would need its own custom map.
For trains, magnetometer calibration is particularly difficult
since common calibration methods, e.g., [6], [7], require the
magnetometer to be rotated in a homogeneous magnetic field
while mounted on the platform on which it will be used. Thus,
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Figure 1. Three components of the magnetic vector field along a ~8km
railway track.

in [8] we showed that the magnetometer calibration can be
carried out simultaneously with the position estimation.

The proposed simultaneous localization and calibration
(SLAC) algorithm from [8] is based on a Rao-Blackwellized
particle filter and achieved meter-level accuracy during an
evaluation with real train data. However, the recursive nature
of the filter requires an initial guess of the train position
with a uncertainty of a few tens of meters. In this paper, we
now propose a novel SLAC snapshot estimator that can cope
with much higher uncertainties and thus can be used to either
provide an initial estimate for the particle filter or can be used
as a standalone localization system.

II. METHODOLOGY
A. Magnetometer Sensor Model

The magnetometer sensor model for calibration is given by
zi, = Cm(sy) + b +ny (1)

where z;, € R? is the measured magnetic vector at time
step k and m(s;) € R? is the magnetic map of the railway
track. The magnetic map relates the along-track train position
s € [0,L], with track length L, to the magnetic field
vector. The remaining parts in (1) are the calibration matrix
C € R3*3 the bias vector b € R?® and the sensor noise
n; € R3. The calibration matrix accounts for the interaction
of soft iron material close to the sensor with the magnetic
vector field which can scale and rotate the magnetic field. The
bias vector accounts for hard iron effects caused by magnetized
material close to the sensor. For the sensor, noise zero mean
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white Gaussian noise is considered with a diagonal covariance
matrix ng ~ N(O, 0'721]:3><3).

For the derivation of the snapshot estimator the sensor
model is written in terms of a single parameter vector 8 € R'?

z, = H(s1)0 + ny, )

with the matrix valued function

(mT(s) 1] 01x4 01x4
H(sg)= O1x4 [m'(sp) 1] O1x4
01x4 O1x4 (m7 (sy) 1]T
3)

The parameter vector contains the nine elements of the cali-
bration matrix and the three elements of the bias vector
6 = [[Cl. )
where [C];.,i € {1,2, 3} are the rows of the calibration matrix
and the [b];,¢ € {1, 2,3} are the elements of the bias vector.
From (2) it can be seen that there is a linear relationship
between the measurement vector z; and the calibration param-
eters 6. In the following a linear estimator for the calibration
parameter under the assumption of known train position is
derived that then will be extended to SLAC.

B. Magnetometer Calibration with Known Positions

With known train positions and sensor model (2), calibration
can be achieved with a maximum likelihood (ML) estimator.
For the ML estimator, we stack /N magnetometer measure-
ments into a single long vector

2y =[z] - z}]! . (5)

Similarly, the corresponding right-hand side of the sensor
model is stacked into the matrix

H(si.y) = [H(s1)T H(sy)'] (6)
and the noise vector is given by
— nT 71T
n;.y = [1’11 IIN] . (7)

With (5)—(7), the linear system of equations for the N mea-
surements is given by

z1.y = H(s1.8)0 + 01y . ¥

Since the noise vector is Gaussian and white, the ML estimate
of @ is equal to the least squares (LS) estimate and thus is
found by left multiplying the pseudo inverse of Hji.n with
the stacked measurement vector

-1

Ois(si.v) = (H(sin) "H(siv)) Hisin) 2y, (9

where the estimated parameters éLs(sl: ~) are a function of
the N train positions.

C. Simultaneous Localization and Calibration (SLAC)

If we drop the assumption of known train positions, the
estimation problem becomes considerably more complex due
to the nonlinear relation of the magnetic field and the train
position si. From a formal point of view, the ML estimate
for unknown positions can be found by maximizing the joint
likelihood p(z1.n 1.5, @) W.rt. the positions and parameters

$1.n,0 = argmax p(z1.n|s1:n,0) . (10)
s1:N,0

Finding the global maximum of the joint likelihood is difficult
in practice since the nonlinear nature of the magnetic field re-
sults in multiple local maxima and the number N of optimized
positions can be large. The concrete number depends mainly
on two parameters, the length of track segment on which the
measurements zi. are collected and the spatial density of the
measurements. Both factors cannot be adapted freely because
the measurements have to cover a track segment that is not too
short because this would lead to ambiguities in the position
estimation. Furthermore, the measurements have to be dense
enough to capture local distortions. Practical values for these
two parameters will be given in Section III. In addition to
the above mentioned challenges, the optimization should be
computable online with a reasonable update rate.

To keep the complexity of the optimization low and to find
the global maxima, we propose two simple steps. In the first
step, the number of positions that are optimized is reduced to
one. The second step then exploits the linear relationship of the
calibration parameters and the magnetometer measurements
when the train position is known.

1) Virtual Magnetometer Array: The reduction in the num-
ber of optimized positions is achieved with odometer mea-
surements. The odometer provides measurements dy_j that
describe the distance the train has traveled between the most
current position sy and an earlier position sy_g. With the
measured distances we can form a virtual array of magnetome-
ter measurements and assign each magnetometer measurement
its absolute position by relating it to sy

Y

Note, for brevity we assume here that the orientation of
the train on the track is known and the sign of odometer
measurements has been corrected accordingly. With (11), all
positions can be computed from sy and therefore only sy has
to be optimized

SN—k = SN —dN—F -

én,0 = argmax p(z1.x|s1.n, 0) -
SN,G

12)

2) Conditional Linearity: The joint optimization of the
likelihood can be replaced with a composition of the optimiza-
tion over the position and the optimization over the parameters

SN, 60 = argmax |arg max p(z1.n/$1.n,0)
SN ]

13)

The inner arg max operator seeks to find € that maximizes
the likelihood of the measurements for a given position. Here,
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the optimization can make use of the conditional linearity of
the parameters on the position and the optimization can be
replaced with the closed-form LS solution éLS(Sl: N) given
by (9). With (9), the optimization in (13) reduces to a one-
dimensional optimization over the along-track train position
SN

~

§n,0 = argmax p(z1.y|51.n, Os(5n)) -
SN

(14)

With (14), we can now find the global maxima of the like-
lihood by evaluating the likelihood at “all” positions along
the track. For each position, this requires the calculation of
éLs(Sl; ~ ) followed by the evaluation of the likelihood defined
by the sensor model (8) and the noise probability density
function

p(z1:n]51.v, Ous(s8)) =N (21 p(51.v), B(sn)) , (15)
where the mean and covariance are given by

p(s1.8) = H(s1.3)0is(s1.n) and B(s1.x) = 02I3xx3n -
(16)

Because s;, is restricted to an interval, a practical approach
for global optimizations is to evaluate (15) for discrete along-
track position placed in the whole interval. This ensures that
always the whole track is considered and that the optimization
does not run into local minima close to the initial position.

D. Implementation

The optimization requires the evaluation of the likelihood
(15) at multiple positions. This section provides some insights
how this can be implemented efficiently. The key for a fast
calculation lies in the prepossessing of all parts that are
independent from the observations, the discretization of the
magnetic map and the interpolation of the virtual magnetome-
ter array data.

1) Map Discretization: The magnetic map is discretized on
a equidistant grid with spacing Ap,. The map can therefore be
represented as an array that contains for each grid point the
corresponding magnetic vector. To retrieve the magnetic vector
from the map at a given position s, we can simply calculate
the index of the closest grid point using spacing A,.

2) Interpolation of Virtual Array: The magnetometer mea-
surement times series is transformed into the spatial domain
using the odometer measurements. The result is a virtual array
with variable spacing since the distance between two mea-
surements depends on the train speed. Then an interpolation
on a fixed grid is performed to simplify the comparison of
the virtual array measurement with the map. In this paper,
an equidistant grid with spacing A, is selected. The trans-
formed and interpolated time series can be seen as a magnetic
“template” that represents the magnetic field along a short
track segment. The interpolation is always done such that the
template has a predefined length L. In practice, this means
that we wait until the train has driven at least L, meters and
then the interpolation is performed.

3) Precalculations: When the likelihood is evaluated for a
position, first the calibration parameters are estimated with (9)
and second, the parameters are used to obtain the mean of the
likelihood with (16). This requires the stacked measurement
matrix H(sy.) from (6) and its pseudo-inverse. Fortunately,
both of these matrices can be calculated offline. The offline
calculation is possible because the magnetic vectors from the
map required for the matrices depend only on the absolute
position, and the template length and spacing. Because the
latter two are fixed, only the position dependency remains.
Thus, the matrices can be calculated once for each position
and then stored as an additional layer in the map.

4) Independence of Calibration Parameters: So far all
calibration parameters are stacked into a single long vector 6
to keep the notation simple, but for the actual implementation
the vector will be split into three shorter vectors. The splitting
is possible because the twelve parameters in € can be divided
into three independent sets with four parameters each. The
independence is due to the diagonal structure of H(sy) in (3)
and the independent sensor noise. For the three shorter vectors
the measurements model is given by

2] = [mT (si) 1] 60; + [ng); , (17)

where the vectors 6;, € {1, 2,3} contain one row [C];. of the
calibration matrix and one element [b]; of the bias vector
T
6; = [[C].. ]

[b]; (18)

The use of three smaller vectors replaces all vector-matrix
multiplications with the twelve-dimensional parameter vector
with three multiplications with a four-dimensional vector. This
requires less multiplications and additions, which makes it
computationally more efficient.

E. Summary of Proposed SLAC Snapshot Estimator

When the magnetic map has been generated, and all ma-
trices H(s1.) and pseudo-inverses have been calculated and
stored, the estimation of the train position can be summarized
by the following steps:

o Wait until train has driven L7 meters and store the cor-
responding magnetometer and odometer measurements.

o Create template from the magnetometer and odometer
measurements and interpolate on equidistant 1D grid.

« Evaluate the likelihood and store the result for all discrete
positions in the map that are inside a given search
window. The evaluation at each position requires the
calculation of (9) and (15). For speeding up these com-
putations, (17) can be used.

o Find the maximum value of the likelihood. The map
position associated to this value is then the desired
position estimate.

III. EVALUATION

In this section, the feasibility of the proposed algorithm
is shown and its accuracy is evaluated based on a data set
recorded with a diesel-electric train of the Deutsche Bahn.
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Figure 2. (top) Advanced TrainLab of the Deutsche Bahn. (bottom) Track
between Berlin Grunewald and Tempelhof used in the evaluation. Image data:
Google Earth

z z

vl

x L\
[M1]e—1—>[Mm2] —

Figure 3. Magnetometer placement and orientation of sensor axes. The
magnetometers are mounted inside the wagon on the floor in the center line
of the track with a shift in the along-track position of d = 0.36 m.

A. Measurement Campaign

The data used for the evaluation was recorded with the
advanced TrainLab of the Deutsche Bahn on a ~8km long
track in Berlin. The train was equipped with a wheel encoder, a
Septentrio GNSS receiver for getting the ground truth position,
and multiple low-cost Kionix KMX62 vector magnetometers.
For the evaluation, the magnetic map was created based
on the GNSS ground truth and one of the magnetometers.
During mapping, the GNSS position was matched to a map
of the railway track and the magnetometer data was linearly
interpolated between the ground truth positions. Since the
magnetometers measure with 200 Hz and the train speed was
limited to roughly 60 kmh™', linear interpolation is sufficient
here to obtain the densely sampled map shown in Fig. 1.
The wheel encoder was mounted on a not-driven wheel and
accurate odometer readings at a rate of 1Hz were provided.
The advanced TrainLab and a satellite image of the test track
is shown in Fig. 2.

For evaluating the proposed SLAC estimator, the measure-
ments of a another run on the same track, performed after
the map was created, is used. Furthermore, the localization
algorithm is provided measurements from a second magne-
tometer, different to the one used to create the map. In Fig.3
the placement of the magnetometers used for mapping (M1)
and localization (M2) is shown including the orientation of
their sensor axes. The two sensor are mounted in different
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Figure 4. Position error cdf for first scenario.

orientations and with a small offset of d = 0.36m in the
along-track direction.

B. Evaluation Setup

During the evaluation, a template length of 50m is used.
The sampling grids of the map and the template are set to
a spacing of A, = 0.1m and A, = 0.3m, respectively.
These values result in a template with 167 magnetic vectors.
As search window for optimization, the whole test track is
used and the likelihood is evaluated for each grid point in the
map. With the map spacing of 0.1 m and with some margins at
the beginning and the end, this results in 79500 evaluations of
the likelihood for one position estimate. To test the estimator
also for different positions, a new template and estimate is
calculated when the train has moved 10 m until the end of the
track is reached. With the parameters given above, our Matlab
implementation needs less than 0.5 s for one position estimate
while running on a laptop CPU.

In the evaluation, three scenarios are considered. In the
first scenario, the estimator uses the data from M2 as it was
recorded. Thus, the data is rotated relative to sensor M1 as
shown in Fig. 3. In the second scenario, M2 is rotated into the
frame of M1. For the third scenario, we first rotate M2 in the
frame of M1 and then apply artificial calibrations parameters to
it. The applied parameters have been selected such that there is
a considerable scaling and cross-talk between different sensor
axes. The calibration matrix and the bias vector applied on the
rotated sensor data is given by

) 12 06 —0.2 ) 8uT
C=1]01 07 -11| andb= |—15uT (19)
03 02 04 23uT

As a benchmark for SLAC, a second estimator was im-
plemented based on the correlation between the map and
the template. In this estimator, the correlation coefficient is
calculated for all positions in the search range and for each
sensor axis. To get a position estimate, the three coefficients
are averaged at each position and then the position with the
maximal value is selected.

C. Results

In Fig.4, the cumulative distribution function (cdf) of the
position error is shown for the first scenario. The dashed line
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is the cdf taken over all template positions along the test
track and the solid line shows the cdf when the 19 % outliers
are removed. Outliers are defined here as errors above 15 m.
In the first scenario, the correlation has almost 99 % outliers
and therefore is not shown here. The bad performance of the
correlation was expected since it cannot cope with the relative
orientation of M2 w.r.t. M1. Here SLAC has an advantage,
since a dense calibration matrix is estimated that can handle
also rotations. Overall the SLAC algorithm achieved a root
mean squared error (RMSE) of 0.89 m when the outliers are
not taken into account.

For the second scenario, the cdf is shown in Fig.5. When
M2 is rotated into the map frame, also the correlation provides
accurate position estimates. This is the case because the rotated
measurements of M2 are mainly biased and scaled compared
to M1 and the correlation coefficient is invariant against
scaling and translations. When the cdf is calculated over
all estimates, including outliers, the correlation outperforms
SLAC. This is mainly due to the lower amount of outliers
which was in the range of 10 % for the correlation and again
19 % for SLAC. If outliers are not considered, shown by the
solid lines in Fig.5, the difference between the algorithms
is neglectable. The RMSE without outliers of the correlation
reaches 0.99 m while the SLAC RMSE is the same as in the
first scenario.

The cdf for the third scenario is shown in Fig.6. Here
again SLAC has an advantage over the correlation due to the
cross-talk between sensor axes introduced by the parameters
from (19), which cannot be compensated by the correlation
coefficient. Neglecting again the outliers, SLAC can here

maintain a RMSE of 0.89m, as in the other scenarios, while
the correlation RMSE increases to 1.58 m. Furthermore, the
amount of outliers for the correlation increases to 39 % while
SLAC shows only a slight increase in outliers to 20 %.

In the shown cdfs, the outliers are removed on the basis of
the GNSS ground truth. This is not feasible in GNSS-denied
areas. Therefore, we would like to briefly discuss outlier
detection using only the SLAC estimates and the odometer
measurements. As a simple test statistic for outlier detection,
the standard deviation over the last five estimates is calculated.
For this, the odometer data is used to correct the shift between
the estimates. If the estimates are accurate, they should now be
close to each other and the sample standard deviation should
be low. If they are still far apart, the standard deviation is high.
With the comparison of the standard deviation to a threshold,
we were already able to detect all outliers. The downside of
this approach is that it has a false alarm rate of ~ 17 %,
which reduces the rate at which valid position estimates can be
provided. For train localization this is not a big issue since the
odometer can predict the train position for multiple seconds
while keeping the error on a meter-level accuracy.

IV. CONCLUSION

This paper proposed a new snapshot estimator for magnetic
field-based train localization with uncalibrated magnetometers.
The estimator performs simultaneous localization and calibra-
tions (SLAC), which enables the use of a single magnetic map
for different train types. By exploiting the conditional linearity
of the calibration parameters, the estimation problem could be
reduced to a one-dimensional optimization problem that can
be solved efficiently.

The estimator was tested with measurement data recorded
on a § km test track in Berlin. The results show that an RMSE
below one meter is achievable and a position estimate can be
provided with a rate of 2 Hz.
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