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Abstract—This paper presents a novel approach that combines
inertial navigation systems (INS) with an acoustic Riemannian-
based localization system to enhance indoor pose tracking.
The proposed method employs an Extended Kalman Filter
(EKF) to fuse data from the two systems. The Riemannian-
based localization system delivers high-accuracy estimates of
the target’s pose, which is then used to correct the INS data.
A new projection algorithm is introduced to map the EKF
output onto the Riemannian manifold, further improving the
accuracy of the estimation. Our results show that the proposed
method significantly outperforms benchmark algorithms. The
effectiveness of the proposed method was evaluated through our
in-house experimental setup.

Index Terms—Pose estimation, Inertial navigation, Acoustics.

I. INTRODUCTION

Accurate pose estimation is crucial for various applications
such as inventory management [1], smart homes, smart man-
ufacturing, and health monitoring [2], [3]. High accuracy is
fundamental to achieving the desired performance in these ap-
plications. Advances in sensor technology and computational
techniques have led to the increased use of inertial sensors
for navigation. Historically, inertial sensors were mechanically
isolated from the target’s rotational motion, ensuring high
accuracy [4]. Modern inertial systems have simplified the
mechanical complexity by rigidly attaching sensors to the
target. These attached ’strapped down’ sensors reduced cost
and size, but increased computational complexity. In this
paper, we focus on a strap-down inertial navigation system
(INS) to estimate position, orientation, and velocity.

The INS operates based on kinematics and classical New-
tonian mechanics, utilizing inertial measurement units (IMUs)
comprised of accelerometers (motion sensors) and gyroscopes
(rotation sensors) to measure acceleration and angular velocity.
Although the INS can use these parameters to estimate posi-
tion, orientation, and velocity at a high rate without external
references, e.g. beacons, positioning, and orientation errors
accumulate over time [2]. To mitigate these errors, navigation
systems typically integrate additional positioning methods.
In our previous work [5], we developed an acoustic-based
pose estimation system using Riemannian optimization, which
performs well under line-of-sight (LOS) conditions but suffers
in non-line-of-sight (NLOS) scenarios due to the nature of the
acoustic waves. Moreover, the system in [5] has a lower update
rate compared to INS.

To address these limitations, we propose a Kalman filtering
approach to integrate estimates from Riemannian localization
methods [5] with those from the INS. This integration aims to
enhance accuracy of the estimated pose in NLOS conditions
and over extended periods.

The main contributions of this paper, detailed in Section IV,
are as follows:

• A novel orientation correction method that models the
orientation matrix as a state vector alongside position and
velocity, resulting in new EKF formulations.

• A new projection algorithm to improve the accuracy of
pose estimates obtained using EKF.

• Development and implementation of a new experimental
setup to validate the proposed algorithms.

• An experimental evaluation of the proposed algorithms.

II. PROBLEM FORMULATION

Accurate pose estimation of a moving target is pivotal
in INS. While inertial navigation based on IMUs has high
accuracy over short periods, its accuracy severely degrades
over time due to error accumulation from the integration
operations used in INS [4]. Therefore, it is common practice
to fuse measurements from different sensors to improve the
tracking accuracy of INS. We propose using three acoustic
receivers arranged at the vertices of an isosceles triangle to
improve INS-based pose estimation accuracy.

The proposed system consists of three acoustic receivers
with unknown positions placed at the vertices of an isosce-
les triangle, four acoustic transmitters (beacons) with known
positions, and an IMU placed at the centroid of the isosceles
triangle. The three receivers, together with the IMU, form the
mobile device (MD). While the proposed system is evaluated
using an equilateral triangle, which is a special case of an
isosceles triangle, the proposed algorithm can be applied to
any isosceles triangle. The MD is illustrated in Figure 1.

Unlike INS, the three acoustic receivers provide highly ac-
curate, non-degrading pose estimation for the MD but require
LOS and operate at a slower rate. The proposed algorithm
fuses both systems to achieve high-accuracy, high-rate pose
estimation, even in NLOS conditions and over extended du-
rations. The centroid position, velocity, and orientation of the
triangle in Figure 1 are estimated using IMU measurements
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(a) Illustration of MD (b) Acoustic Rx array with IMU

Fig. 1: Mobile device

and INS equations [4], and then corrected via our Riemannian
localization [4].

III. POSE ESTIMATION

This section provides a brief summary of the inertial
navigation [4] and Riemannian localization algorithms [5]
used in this work. For more details on INS and Riemannian
localization, we refer the reader to [4] and [5].

A. Pose Estimation via Inertial Navigation System

Navigation systems must provide the pose of an MD relative
to a fixed navigation frame, while the IMU measures acceler-
ation and angular velocity in the MD’s moving body frame.
The body frame, centered at the triangle’s centroid in Figure
1, aligns with the MD’s roll, pitch, and yaw axes, whereas the
navigation frame is fixed with axes north, east, and up. Both
frames form right-hand systems.

Let’s denote the navigation (reference) frame and body
frame axes as [Oxn , Oyn , Ozn ] and [Oxb

, Oyb
, Ozb ], respec-

tively. A vector vb expressed in the body frame is transformed
to the navigation frame via the orientation matrix Cn

b [4]:

vn = Cn
b v

b, (1)

where Cn
b is a 3× 3 matrix that represents the body frame’s

attitude relative to the navigation frame. This attitude can be
expressed using direction cosines, Euler angles, or quaternions.

The IMU, equipped with a triaxial accelerometer and gy-
roscope, measures the specific force ab = [abx, a

b
y, a

b
z]

T (com-
monly referred to as 3D acceleration) and angular velocity
ωb
nb = [ωx, ωy, ωz]

T where the angular velocity is that of
the body frame relative to the navigation frame, expressed in
the body frame. To estimate the MD’s position and velocity
in the navigation frame under the assumption of known
initial conditions, the orientation matrix Cn

b is computed, by
integrating angular velocity over time [4]:

Cn
b (k + 1) = Cn

b (k) + ∆tĊn
b (k), (2)

where ∆t is the IMU sampling period, and Ċn
b (k) =

Cn
b (k)Ω

b
nb(k), and Ωb

nb is the skew-symmetric matrix of ωb
nb.

The orientation matrix is orthogonal, satisfying Cb
n(k) =

(Cn
b (k))

T . The orthogonality of the orientation matrix is
approximately achieved, assuming that the first-order approx-
imation given in (2) is accurate under a high sampling rate.

The specific force ab is transformed to the navigation frame
as an

′
(k) = Cn

b (k)a
b(k), with gravitational acceleration g

removed to obtain an(k). Assuming constant acceleration

during the sampling period, the velocity vn
c and position pn

c

at the centroid of the MD are updated as:

vn
c (k + 1) = vn

c (k) + ∆tan(k),

pn
c (k + 1) = pn

c (k) + ∆tvn
c (k) +

∆t2

2
an(k).

Given initial conditions pn
c (0), v

n
c (0), and Cn

b (0), the IMU
measurements enable estimation of the MD’s position, veloc-
ity, and orientation at each time step.

B. Pose Estimation via Acoustics on Riemannian Manifolds

The Riemannian optimization algorithm from [5] estimates
the positions of three receivers arranged as vertices of an
equilateral triangle with side length d, rigidly attached to the
MD. The system includes four acoustic beacons with known
positions. The MD’s position is defined as the centroid of
the triangle, and its orientation is derived from the vertices’
positions.

Let pi ∈ R3 denote the i-th receiver’s unknown position
and bj ∈ R3 the j-th beacon’s known position. The time of
flight (TOF) τij between the j-th beacon and i-th receiver,
estimated using correlation-based methods [6] [7], is used to
calculate distances rij = cτij , where c is the speed of sound.
The receivers and beacons are assumed to be synchronized, as
will be detailed in the experimental setup section. The position
estimation problem is formulated as a constrained optimization
[5]:

min
p1,p2,p3∈R3

3∑
i=1

∣∣∣∣∣∣Bpi −
1

2
||pi||2214 − yi

∣∣∣∣∣∣2
2

(3a)

s.t. (p1 − p2)
T (p2 − p3) = −d2 cos(

π

3
) (3b)

(p1 − p3)
T (p2 − p3) = d2 cos(

π

3
), (3c)

where B ∈ R4×3 is a matrix where the j-th row of the matrix
corresponds to the location of the j-th beacon, i.e., bT

j , 14

is an all-ones vector, yi =
1
2 (b

2 − r2i ), b
2 ∈ R4×1 is vector

of squared norms of beacons positions, and r2i ∈ R4×1 is
a vector of squared distances between the i-th receiver and
each beacon. The constraints ensure the triangle’s geometry,
forming a Riemannian manifold M.

Our algorithm in [5] estimates p1,p2, and p3 by solving the
optimization problem in (3a) on Riemannian manifolds. The
centroid position pR

c and orientation matrix Cn
b are computed

as:
pR
c =

3∑
i=1

pi

3
, Cn

b = [On
xb
, On

yb
, On

zb
], (4)

where the superscript R in pR
c distinguishes the centroid

position obtained using the Riemannian algorithm from the
position obtained using an INS, and the body frame axes are:

On
xb

=
p1 − pR

c

||p1 − pR
c ||

(5)

On′

yb
= p2 − pR

c − < p2 − pR
c , O

n
xb

> On
xb

(6)

On
yb

=
On′

yb

||On′
yb
||
, On

z = On
xb

×On
yb
. (7)
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The vertices’ positions are derived from the centroid and
orientation matrix:

P = [pR
c ,p

R
c ,p

R
c ] +Cn

b


√
3d
3

−
√
3d

6
−
√
3d

6

0 d
2 −d

2
0 0 0

 . (8)

IV. FUSION OF INS AND ACOUSTICS POSITIONING

This section presents a new state equation formulation
that incorporates the orientation matrix into the state vector,
leading to revised EKF equations. A novel retraction operator
is also introduced, projecting the EKF output onto the isosceles
triangle manifold to improve tracking accuracy for the target’s
position and orientation.

Let x = [pT
c ,v

T
c , c

T ]T ∈ R15 denote the state vector, where
pc is the MD’s centroid position, vc its velocity, and c the
vectorized orientation matrix Cn

b . Given the nonlinearity of
the state equations, we evaluate the performance of EKF for
state estimation. The state transition model is:

x(k + 1) = F(ab,Ω
b
nb)x(k),

where F(ab,Ω
b
nb) is:

F =

I3×3 ∆tI3×3
∆t2

2 a×b
03×3 I3×3 ∆ta×b + ∆t2

2 (a×b )(Ω
b
nb

×
)

09×3 09×3 I9×9 +∆t(Ωb
nb

×
) + ∆t2

2 (Ω2
nb

×
)

 .

Here, a×b = aTb ⊗ I3×3, (Ωb
nb)

× = (Ωb
nb)

T ⊗ I3×3, and
(Ω2

nb
×
) = (Ωb

nb

⊗
I3×3)(Ω

b
nb

⊗
I3×3), where ⊗ denotes

Kronecker product operation, and I3×3 is the identity matrix.
The acceleration ab is assumed to be free of gravity.

The nonlinearity in the state-transition model arises from
the multiplication of the inputs by the state vector. The input
noise is modeled as additive Gaussian noise:

u(k) =

[
ab(k)
ωb(k)

]
= ũ(k) + n(k), (9)

where ũ(k) is the noiseless input, and n(k)
is zero-mean Gaussian noise with covariance
Q = diag(σ2

ax
, σ2

ay
, σ2

az
, σ2

ωx
, σ2

ωy
, σ2

ωz
).

The measurement vector q = [pT
1 ,p

T
2 ,p

T
3 ]

T ∈ R9 repre-
sents the vertices’ positions estimated via Riemannian local-
ization. The measurement equation is:

q(k + 1) = Hx(k + 1) + ν(k + 1), (10)

where the measurement (observation) matrix H is:

H =

I3×3 03×3 dT
1

⊗
I3×3

I3×3 03×3 dT
2

⊗
I3×3

I3×3 03×3 dT
3

⊗
I3×3

 , (11)

di represents the vector from the centroid of the triangle
to the ith vertex, and ν(k) is zero-mean Gaussian noise
with covariance Rk = diag(σ2

p1x
, σ2

p1y
, . . . , σ2

p3z
). Due to

the nonlinear process equation, the linear Kalman filter is
suboptimal. This paper evaluates the EKF for estimating the
MD’s position and orientation.

A. Extended Kalman Filter

The EKF operates in two steps: prediction and correction.
Given an initial state estimate x(0), the state and its covariance
matrix are predicted as:

x̄(k + 1) = F(ab, ωb)x̂(k) (12)

P̄(k + 1) = F(ab, ωb)P̂(k)FT (ab, ωb) + FuQkF
T
u , (13)

where x̄(k + 1) and P̄(k + 1) are the predicted state and
covariance at time k+1, and x̂(k) and P̂(k) are the corrected
state and covariance at time k. The Jacobian matrix Fu of
F(ab, ωb) with respect to pc, vc, and c is:

Fu =

∇ab
pT
c ∇ωb

pT
c

∇ab
vT
c ∇ωb

vT
c

∇ab
cT ∇ωb

cT

 , (14)

with elements:

∇ab
pT
c =

∆t2

2
Cn

b , ∇ωb
pT
c = 03×3, ∇ab

cT = 09×3,

∇ωb
cT = ∆t[E×T

1 c, E×T

2 c, E×T

3 c]+

∆t2

2
[(xΩ

2
nb

×
)c, (yΩ

2
nb

×
)c, (zΩ

2
nb

×
)c],

∇ab
vc = ∆tCn

b +
∆t2

2
Cn

bΩ
b
nb, ∇ωb

vc =
∆t2

2
Cn

bΞ
T
b

Here, A× denotes the Kronecker product of A with I3×3, ei
are basis vectors, Ei are their skew-symmetric matrices, and
ΞT

b is:

ΞT
b =

 0 abz −aby
−abz 0 abx
aby −abx 0

 .

The matrices xΩ
2
nb, yΩ2

nb, and zΩ
2
nb are the partial derivatives:

xΩ
2
nb =

∂

∂ωx
(Ω2

nb), yΩ
2
nb =

∂

∂ωy
(Ω2

nb), zΩ
2
nb =

∂

∂ωz
(Ω2

nb).

To correct the predicted state and covariance, compute the
Kalman gain Kk+1:

Kk+1 = P̄(k + 1)HT (HP̄(k + 1)HT +Rk+1)
−1 (15)

Finally, update the state and covariance:

x̂(k + 1) = x̄(k + 1) +Kk+1(q(k + 1)−Hx̄(k + 1))

P̂(k + 1) = (I−Kk+1H)P̄(k + 1).

B. Projection of the Estimated State to the Manifold

The estimated position and orientation matrix are trans-
formed into the positions of the three vertices of a triangle.
However, the EKF does not guarantee that these vertices lie
on the isosceles triangle manifold. To address this, a novel
and efficient retraction algorithm is introduced to project the
estimated vertices onto the manifold.

While the retraction operator in [5] achieves high local-
ization accuracy, it assigns disproportionate weight to one
vertex when the term pT

1 (p2 − p3) approaches zero, which
is inefficient near the true solution. This paper proposes a
more efficient retraction method for points close to the optimal
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solution. Given high sampling rates, the EKF output, though
not on the manifold, is assumed to be near the optimal solution.
Thus, the retraction minimally perturbs the output to project
it onto the manifold.

Let Zk = [zk1 , z
k
2 , z

k
3 ] denote the vertices obtained from the

EKF. The retraction algorithm consists of four steps:
1. Centering: Translate the centroid of Zk to the origin:

z′i = zki − zc, where zc =
zk1 + zk2 + zk3

3
.

2. Scaling: Scale the triangle so the base length is d:

z′′i = λkz′i, where λk =
d

||z′2 − z′3||
.

3. Alignment: Translate z′′1 in the direction of the unit
vector uz = (z′′3 − z′′2)/d such that the translated point z′′′1
falls onto the bisector of the triangle’s base. The result of this
operation is an isosceles triangle centered around the origin.
The median [z′′1z

′′
2,3], from the vertex z′′1 that bisects the base

is z′′1 − (z′′3 + z′′2)/2. The magnitude of the translation γk is
simply found as the projection of the median [z′′1z

′′
2,3] onto the

unit vector uz:

γk =

〈
z′′1 − z′′3 + z′′2

2
,uz

〉
,

where ⟨·, ·⟩ is the inner product of vectors. The updated
positions of the vertices after this step are:

z′′′1 = z′′1 + γkuz, z′′′2 = z′′2 , z′′′3 = z′′3 .

4. Recentering: Translate the vertices back by zc:

pR
i = z′′′i + zc.

The final output is an isosceles triangle with base length d.

V. EXPERIMENTAL SETUP

The acoustic localization system consists of three main com-
ponents: the Master Station, Acoustic Receiver, and Acous-
tic Transmitters. The Master Station (Figure 2a) uses an
STM32F469 Discovery kit with an NRF24L01 module. Each
Acoustic Transmitter (Figure 2b) also employs an STM32F469
Discovery kit, an XM-N1004 Sony stereo amplifier, and two
Pioneer TS-T110 tweeters (7 kHz bandwidth, 20 kHz central
frequency) mounted on tripods with retro-reflective spheres.

(a) Master Station (b) Acoustic transmitter

Fig. 2: Master and Acoustic Transmitter

The Acoustic Receiver (Figure 3), representing the MD,
includes an STM32F469 Discovery kit, an NRF24L01 module,
an MTi-1 IMU kit, and a custom PCB with four microphones
arranged at the vertices of two equilateral triangles (side

Fig. 3: Acoustic receiver

length: 36.80 mm). Only three microphones are used in this
study.

The experimental setup (Figure 4) includes the Master
Station, two Acoustic Transmitter Stations, the MD, and an
OptiTrack motion capture system [8] for ground truth posi-
tion and orientation tracking. Retro-reflective markers on the
Transmitters and Receiver ensure accurate tracking.

The Master Station establishes a common time reference via
a wireless link, triggering acoustic transmissions. The Receiver
records signals from three microphones and IMU data. Post-
experiment, OptiTrack records are synchronized with Receiver
data for error calculation and analysis.

Fig. 4: Experimental setup

VI. EXPERIMENTAL RESULTS

In this experiment, four acoustic transmitters (beacons) were
placed at known locations, while three acoustic receivers,
arranged in an equilateral triangle on a PCB, were fixed to
an MD (Figure 4). The MD was equipped with an MTi-
1 IMU, including a triaxial accelerometer and gyroscope.
The MD was moved within a 4m × 6m × 3m room (Figure
6). The IMU sampled at 100 Hz, and the acoustic system
measured distances between transmitters and receivers at 5
Hz. Synchronization was achieved using an RF signal. The
30-second experiment was recorded and processed offline.

Two Kalman filter variants were evaluated: 1. A Linear
Kalman Filter (LKF) with state variables for the MD’s cen-
troid position and velocity, using Gauss-Newton (GN) and
Riemannian Trust-Region (RTR) methods for vertex position
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(b) Error in pitch angle
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(c) Error in roll angle

Fig. 5: Error in the estimated Euler angles.

(a) 3D motion path

Fig. 6: Experimental evaluation: Motion trajectory.

estimation. 2. An EKF with state variables for centroid posi-
tion, velocity, and orientation matrix, using vertex positions to
estimate both orientation and centroid position.

The RMSE of the estimated positions, averaged over the
three vertices and time, is shown in Table I. The Riemannian-
based EKF outperformed GN-based methods, with over 80%
of positions having errors below 9 cm, compared to 13 cm for
GN-based EKF as shown in Figure 7.
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Fig. 7: Error CDF at σa = 55 cm/s2, σω = 0.08 rad/s, σd =
12 cm (estimated from actual measurements.)

TABLE I: RMSE in cm averaged over the three receivers.

Algorithm LKF-GN LKF-RTR EKF-GN EKF-RTR
RMSE (cm) 10.44 10.60 7.52 5.09

The RMSE of the estimated Euler angles is detailed in Table
II. Riemannian-based EKF showed slight improvements over

GN-based methods, as illustrated in Figure 5.

TABLE II: RMSE in degrees of the estimated Euler angles.

Algorithm Yaw Pitch Roll
RMSE RMSE RMSE

EKF-GN 4.07 0.67 2.40
EKF-RTR 2.68 0.65 1.55

VII. CONCLUSION

This paper presented an enhanced EKF for high-precision
3D pose estimation of a moving target. The proposed ap-
proach integrates measurements from an INS and an acoustic
navigation system, with a novel retraction algorithm pro-
jecting the filter output onto an isosceles triangle manifold.
Experimental results show that using an array of acoustic
receivers significantly improves accuracy over single-receiver
systems. Additionally, correcting INS orientation with the
receiver array yields substantial accuracy gains compared to
benchmark methods. Riemannian-based methods, leveraging
the receiver array geometry as constraints, outperform Gauss-
Newton solvers, as validated through real-world experiments.
Acknowledgments: This research was supported by KAUST
and the Ibn Rushd Postdoctoral Fellowship.
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