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Abstract—The estimation of high-resolution spectrometer in-
strument spectral response functions (ISRFs) is crucial, for
example in the context of remote sensing in order not to
compromise the determination of trace gas concentrations. This
paper introduces a new statistical model and an optimization
algorithm for the joint estimation of ISRFs and spectral shifts. As
a key novel ingredient, we investigate the use of optimal transport
theory and the associated Wasserstein distance to estimate the
spectral shifts, comparing this approach to the conventional ℓ2
norm. As a second key ingredient, a sparse representation of the
ISRFs is used to decompose these functions into a fixed dictionary
of atoms. Results suggest that the proposed method performs
well for small spectral shifts with both distances, while the
Wasserstein distance proves particularly effective for estimating
larger spectral shifts.

Index Terms—Instrument spectral response function (ISRF),
Spectral shifts, Optimal transport, Wasserstein distance, Sparsity.

I. INTRODUCTION

Context and related work. High-resolution spectrometers,
such as the CNES/UKSA MicroCarb instrument, play a vital
role in remote sensing applications, including monitoring gas
fluxes and retrieving atmospheric trace gas concentrations. For
the MicroCarb mission, currently under study by the Centre
National d’Etudes Spatiales (CNES) in Toulouse, France [1],
achieving the expected accuracy in determining CO2 concen-
trations requires precise knowledge of the instrument spectral
response functions (ISRFs) at the relevant wavelengths. Each
pixel on the spectrometer detector is associated with a unique
ISRF, which can vary across the entire wavelength range.
The wavelength corresponding to each pixel is defined as the
center of the ISRF at that pixel. Spectral calibration requires
precise characterization of both the shape of the ISRFs and
the specific wavelengths at which they are centered. The
measured spectrum, denoted as s(λl), at a given wavelength
λl associated with a given pixel l is the result of a convolution
between the ISRF for that pixel, denoted as Il, and a high-

resolution reference spectrum r [2], [3]:

s(λl) =

N/2∑
n=−N/2

r(λl − n∆)Il(n∆) + ϵl, (1)

where ∆ is the spacing between the N + 1 points of the
ISRF wavelength grid, λl is the measured wavelength (which
is not necessarily on the same grid as the ISRF), and ϵl is
Gaussian noise associated with the lth measurement. Initial
ISRF wavelength characterization is typically performed on
the ground. However, spectral shifts can arise due to factors
such as imperfect calibration, Doppler shifts, red light effects,
or thermoelastic errors [4], [5]. These shifts cause the ISRF to
be centered at a displaced wavelength, λ′

l = λl+ δ(l), leading
to errors in the peak locations of the spectrum, as illustrated
in Fig. 1, but also to a slight modification of the values of the
measured spectrum. A realignment is needed to minimize the
discrepancy between the measured and true spectra. Note that
the spectral shifts δ(l) generally depend on the wavelength.

Recent studies have explored the use of sparse representa-
tions for ISRF estimation, being more effective than traditional
parametric models like Gaussian or generalized Gaussian
functions [6]. However, no prior work has addressed the joint
estimation of both ISRFs and unknown spectral shifts.
Goals, Contributions, and Outline. The objective of this
work is to introduce a new approach for estimating jointly the
ISRFs and spectral shifts during spectrometer calibration. The
first contribution is the definition of a statistical model that
enables the joint estimation of ISRFs and spectral shifts (see
Section II), along with the proposed optimization algorithm.
The second contribution is the use of a new metric based on
optimal transport (OT) theory for estimating spectral shifts
(see Section III). Experiments are conducted on data simulated
by CNES for the MicroCarb mission, covering two levels of
spectral shifts. The results are presented in Section IV and
demonstrate the effectiveness of the proposed approach in
jointly estimating spectral shifts and ISRFs. Finally, conclu-
sions and future works are reported in Section V.
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Fig. 1. Effect of spectral shifts on the measured spectrum.

II. JOINT ESTIMATION OF ISRFS AND SPECTRAL SHIFTS

A. Sparse representation of ISRFs

Each specific pixel l of the spectrometer detector has an asso-
ciated ISRF Il with the central wavelength λl. Only a single
measurement (1) is available for each wavelength λl, leading
to a non-identifiable problem since the ISRFs for different
pixels are not identical. However, within a small observation
window W(λl) =

{
λl−L

2
, ..., λl+L

2

}
around each wavelength

of interest λl, the ISRFs do not change significantly, and thus
these measurements can be used for ISRF estimation [6]. In
vectorial form, (1) can be rewritten as:

sl = RlI l + ϵl, l = 1, ..., Nλ, (2)

where ϵl ∈ RL+1 is an additive white Gaussian noise and

sl ≜ [s(λl−L
2
), ..., s(λl+L

2
)] ∈ RL+1,

Rl ≜ [r(λl′ − n∆)]l−L
2 ≤l′≤l+L

2

−N
2 ≤n≤N

2

∈ R(L+1)×(N+1),

I l ≜ [Il(−N∆/2), ..., Il(N∆/2)] ∈ RN+1.

The matrix Rl therefore contains the reference spectrum r in-
terpolated onto the ISRF wavelength grid for each wavelength
within the observation window W(λl), i.e.,

Rl = π(r,W(λl)), l = 1, ..., Nλ, (3)

where r ∈ RNr is the vectorized reference spectrum and the
interpolation function π : S ×W → R(L+1)×(N+1) returns a
matrix of L + 1 shifted versions of the input spectrum (each
centered at the wavelengths in the observation window and
interpolated at the ISRF wavelengths) and S,W are the sets
of reference spectra and observation windows W(λl), l =
1, ..., Nλ. Based on previous studies [6], the ISRF I l of pixel
l can be decomposed as follows:

I l ≈ IK
l = Φαl, (4)

where Φ ∈ R(N+1)×ND is a dictionary composed of ND
atoms and αl = (αl,1, ..., αl,ND)

T ∈ RND is a sparse vector
with K non-zero coefficients. Thus, IK

l ∈ RN+1 is a sparse

approximation of the ISRF I l. The representation (4) and the
forward model (1) lead to:

sl ≈ RlI
K
l = Ψl αl, (5)

with a new dictionary Ψl ≜ RlΦ ∈ R(L+1)×ND . The
dictionary Φ and the reference spectra Rl being known, Ψl

is also known. Thus, estimating the ISRFs from the measured
spectra reduces to finding a sparse vector αl yielding a good
approximation of sl in (5). The problem can be formulated as
in [6] using the l0 pseudo-norm || · ||0 with penalty µ:

argmin
αl

L(αl, µ) = argmin
αl

||sl −Ψlαl||22 + µ||αl||0. (6)

This problem is non convex and NP-hard, and therefore many
approximations and heuristics have been proposed to solve
this problem. An approach that previously yielded promising
results in this context is the use of the greedy algorithm
Orthogonal Matching Pursuit (OMP) [6]–[8].

B. Spectral shift estimation
The characterization of the central wavelengths λl and ISRFs
I l is typically performed during ground calibration. However,
spectral errors and ISRF modifications may arise in-flight
due to uncorrected Doppler shifts or other effects, which can
induce spectral shifts in the measured spectra. It makes sense
to model these shifts using a polynomial of degree P :

δ(l, c) =

P∑
p=0

cp

(
l

lmax

)p

, (7)

where c = [c0, ..., cP ]
T ∈ RP+1 is a vector to be estimated

and lmax is the number of pixels in the band. Note that a
first-order polynomial is used for the spectrometer GOSAT
[4], whereas up to fifth-order polynomials are considered for
other spectrometers such as OCO-2 [5]. The associated shifted
wavelength λ′

l is thus defined by λ′
l = λl + δ(l, c). In this

configuration, the vector I l characterizing the ISRFs is not
affected by spectral shifts, contrary to the matrix Rl that
should be modified to account for these spectral shifts.

The problem considered to estimate the ISRFs in presence
of spectral shifts is defined as:

argmin
A,c

g(A, c), (8)

where g is defined from (6) with a polynomial model for the
spectral shifts as:

g(A, c) ≜
Nλ∑
l=1

||sl −Rl(c)Φαl||22 + µ

Nλ∑
l=1

||αl||0,

Rl(c) ≜ π

(
r,W

(
λl +

P∑
p=0

cp

(
l

lmax

)p
))

, (9)

where A = [α1, ...,αNλ
] ∈ RND×Nλ . Estimating the ISRFs

and their center wavelengths thus reduces to estimating the
sparse vectors α1, ...,αNλ

along with the vector c of the
polynomial coefficients modeling the spectral shifts. The esti-
mation method proposed to solve (8) is introduced in the next
section.
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C. Optimization method

The proposed optimization method solving (8-9) iteratively
estimates the ISRFs for a given band and the polynomial
coefficients associated with the spectral shifts, as summarized
in Algorithm 1. The estimation of A given c is conducted
using the OMP algorithm taking into account the sparsity
of the vector αl (see lines 9 and 21 of Algorithm 1). The
estimation of the polynomial coefficients (vector c) given A
is conducted using the Nelder-Mead simplex method [9] with
the initialization c = 0 (see line 12 of Algorithm 1). This
initialization corresponds to an absence of spectral shifts. Note
that the first estimation of the ISRF sparse vectors αl is
performed using the first atom of the dictionary (line 9 of
Algorithm 1), as it represents an approximate average of all
the ISRFs used to build the dictionary. After this first step, the
vectors αl are estimated for fixed c for the entire band, using
the OMP algorithm with K atoms as in [6]. This alternating
process continues until convergence.

Algorithm 1 Iterative estimation of ISRFs and spectral shifts.
Input: Measured spectrum s, Reference spectrum r, Wavelengths λ, Dictio-
nary Φ, Desired cardinality K , Polynomial order P
Output: ISRF estimation Î , Corrected spectral measurements ŝ, Spectral
shifts λ̂

′
.

1: Initialize ĉ = [0, ..., 0]T ;
2: Initialize R̂ with;
3: for l = 1, ..., Nλ: do
4: Update: R̂l = π(r,W(λl));
5: end for
6: Initialize Â with;
7: for l = 1, ..., Nλ: do
8: Ψ̂l = R̂l Φ;
9: α̂l = OMP(sl, Ψ̂l, 1);

10: end for
11: while not convergence do

▷ Estimation of the spectral shifts:
12: Update: ĉ = argminc

∑Nλ
l=1 ||sl −Rl(c)Φα̂l||22;

13: for l = 1, ..., Nλ: do
14: Update: λ̂′

l = λl +
∑P

p=0 ĉp
(

l
lmax

)p
;

15: end for
▷ Interpolation of the reference spectrum:

16: for l = 1, ..., Nλ: do
17: Update: R̂l = π(r,W(λ̂′

l));
18: end for

▷ Estimation of sparse vectors:
19: for l = 1, ..., Nλ: do
20: Ψ̂l = R̂l Φ;
21: α̂l = OMP(sl, Ψ̂l,K);
22: end for
23: end while

▷ ISRF estimation:
24: Î = [Φα̂1, ...,Φα̂Nλ

]
▷ Reconstruction of the spectrum:

25: ŝ = [R̂1Î1, ..., R̂Nλ
ÎNλ

]
▷ Spectral shift estimation:

26: λ̂′ = [λ̂′
1, .., λ̂

′
Nλ

]

III. OPTIMAL TRANSPORT

Given the estimated ISRFs Î , the use of the ℓ2 metric may
not always be suitable for estimating spectral shifts. It is
particularly true when the spectral shifts are large, which can
lead to a cost function with many local minima. This paper

proposes to investigate a new distance based on OT theory to
better estimates the shift parameter c.

A. Optimal transport and Wasserstein distance in 1D

Let η, ξ : R → R+ be two non-negative densities, i.e.,
functions absolutely continuous with respect to the Lebesgue
measure on R, and normalized such that∫

R
η(λ)dλ =

∫
R
ξ(λ)dλ = m,

for some m > 0. Then, their Wasserstein-2 distance (see, e.g.,
[10]) is defined as

W2(η, ξ) =

 inf
T :R→R
T#η=ξ

∫
R
(λ− T (λ))2dλ

1/2

,

where T#η denotes the push-forward or image measure of η
under the map T . The optimal so-called Monge map T can
be interpreted as the map rearranging the mass distribution
described by the density η to that of ξ so that the overall
displacement, or transport, is minimized. Here, displacement
is measured by the squared Euclidean distance on R. In fact,
as η and ξ are densities, such a (unique) Monge map always
exists and is given as [11, Thm. 2.9]

T = F
[−1]
ξ ◦ Fη,

where Fη and Fξ are the cumulative distribution functions of
η and ξ, and F

[−1]
ξ denotes the pseudo-inverse1 of Fξ. The

Wasserstein-2 distance can then be written in closed form as:

W2(η, ξ) =

(∫ m

0

(
F [−1]
η (y)− F

[−1]
ξ (y)

)2
dy

)1/2

. (10)

In our case, the densities η and ξ correspond to the measured
and reconstructed spectral densities s and ŝ. Thus, to compute
their Wasserstein distance, we approximate (10) by replacing
the integrals defining F

[−1]
η and F

[−1]
ξ by Riemann sums.

B. A new metric for spectral shift estimation

OT theory has been used in multiple applications, including
high resolution seismic imaging [12]. Due to the convexity
of OT distances with respect to translations and dilatations,
the Wasserstein distance is an attractive alternative to the ℓ2
norm. In the case of spectral shift estimation, the measured
spectrum s and the reconstructed spectrum obtained using
the model should have the same mass to properly define
the 1D Wasserstein distance (10). The densities η and ξ(c)
introduced in Section III are then defined for this problem as
the normalized measured spectra and the model depending on
the shift parameter c, with a mass m = 1.

Fig. 2 displays the distances ||η − ξ(c)||2 and W2(η, ξ(c))
versus the spectral shifts c, assuming that the ISRFs are
known. In this example, the true spectral shift is generated
identically for all pixels of the band to 0.065 nm, i.e., P = 0
and c0 = 0.065. The figure illustrates that the use of the ℓ2

1This formally allows for cases when ξ is zero on intervals.

2154



-0.4 -0.2 0 0.2 0.4 0.6

c
0

2

4

6

8

10

||
 -

 
(c

0
)|

| 2
106

-0.4 -0.2 0 0.2 0.4 0.6

c
0

0.5

1

1.5

2

2.5

3

W
2
(

 ,
 

(c
0
))

105

Fig. 2. Distances between the measurements sl and the statistical model
Rl(c)Φαl versus the shift value using the ℓ2 norm (left) and OT (right).

norm can lead to a cost function with several local minima,
contrary to the Wasserstein distance that defines a well be-
haved cost functional without local minima, suggesting that
the OT metric is more adapted to this situation. The estimation
of the spectral shifts performed in line 12 of Algorithm 1 can
then be done using the Wasserstein distance. This line is thus
modified as: Update ĉ = argminc

∑Nλ

l=1 W2(sl,Rl(c)Φα̂l).

IV. NUMERICAL EXPERIMENTS

A. Datasets and simulation

Data. The data used in this paper results from simulations
carried out by the CNES for the MicroCarb mission. The main
objective of this mission is to monitor carbon dioxide fluxes at
the Earth’s surface and determine as accurately as possible the
concentration of carbon dioxide in the atmosphere. The Micro-
Carb instrument is a spectrometer with high spectral resolution
acquiring data in two infrared absorption bands (B2: 1.596-
1.618µm and B3: 2.023-2.051µm) to recover CO2 absorption
lines, and in two near-infrared bands (B1:0.758-0.769µm and
B4: 1.264-1.282µm) to determine oxygen concentration. The
results shown in this paper are obtained for the first band B1.
The reference spectrum was obtained using a radiative transfer
software named 4A/OP [13]. The ISRFs were then obtained
using a simulator of the MicroCarb instrument developed by
CNES. The spectral shifts were simulated using a polynomial
of order P = 3.
Experimental setup. The dictionary Φ is built using the
ND singular vectors associated with the largest singular values
from a singular value decomposition (SVD) of examples
of ISRFs, simulated for the chosen band. The size of the
dictionary is ND= 25, and the size of the observation window
is L= 80. The number of selected atoms K is set to 4, as
in [6]. The performance is evaluated in terms of spectrum
reconstruction errors, ISRF approximation and spectral shift
estimation using the same metric. More precisely, the error
between a true parameter vector θ = (θ[1], ..., θ[Q])T and its
estimation θ̂ is expressed as:

Eθ =

Q∑
q=1

|θ[q]− θ̂[q]| /
Q∑

q=1

|θ[q]|. (11)

B. Results

Spectral shift estimation. Two different scenarios for gen-
erating the spectral shifts are assessed. In scenario SCN1, a
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Fig. 3. Spectral shift estimation for SNC1 (left) and SCN2 (right).

spectral shift of up to three pixels is generated, resulting in
a maximum shift value of 0.061nm. In SCN2, a larger shift
of up to thirty pixels is used, associated with a maximum
value of 0.78nm. Spectral shift estimates obtained using the
proposed algorithm are displayed in Fig. 3. They show that for
a shift of three pixels, both metrics provide good results, with
slightly superior performance for the ℓ2 norm. However, when
the shift becomes larger (right figure), the use of the ℓ2 norm
becomes challenging for accurately retrieving the spectral
shift. In contrast, the OT metric provides reliable results in
both scenarios, at the price of increased computational cost.
Joint estimation of ISRFs and spectral shifts. Figures 4
a) and b) display the results obtained in terms of spectrum re-
construction whereas Fig. 4 c) shows the ISRF approximation
error for all 1024 wavelengths of the band B1. For spectral
shifts up to three pixels (SCN1), the two metrics provide
good estimation results both in terms of ISRF approximation
errors and spectrum reconstruction, with errors less than 1%.
However, when the spectral shifts are larger (SCN2), the ℓ2-
norm based approach fails to estimate the ISRFs, yielding
poor ISRF estimates. Using the Wasserstein distance yields
significantly better results, with errors comparable to those
observed in the SCN1 scenario, at the price of an increased
computational time. These results are confirmed in Fig. 5 for
the ISRF located at the center of the band.
Robustness to noise. Table I shows results for the above
two scenarios for different noise levels. The spectrum re-
construction, mean ISRF approximation and spectral shift
estimation errors (defined using (11)) are smaller for larger
SNR values, as expected. The OT metric always provides
better results than the ℓ2 norm for larger spectral shifts. As
the SNR value increases, the results are very similar, with an
OT metric providing slightly better results than the ℓ2 norm.

V. CONCLUSION

This paper proposed a new method to jointly estimate instru-
ment spectral response functions (ISRFs) and spectral shifts
for spectrometer calibration. The spectral shifts are modeled
using a polynomial, but our approach could also handle other
parametric model functions. An effective iterative algorithm
was proposed, alternating between sparse approximation of
ISRFs using OMP and estimation of spectral shift model
parameters. As a key original ingredient, a new metric based
on optimal transport is studied for the spectral shifts. The
Wasserstein-2 distance is used as a heuristic trick that is
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interesting for its convexity properties and is proposed here as
an alternative to the commonly used ℓ2 norm. An associated
theoretical study is left for future work. Simulation results sug-
gest that the proposed joint estimation method yields accurate
ISRF and the spectral shift estimates. For spectral shifts are
small, both the ℓ2-norm and Wasserstein-2 based solutions are
effective, but for large values of the spectral shifts, the former
fails while the Wasserstein-2 norm based approach yields very
satisfactory results, at the price of increased computation cost.

TABLE I
SPECTRUM RECONSTRUCTION ERROR (ESPECTRUM ), ISRF APPROXIMATION

ERRORS (EISRF ) AND SPECTRAL SHIFTS (ESHIFTS ) ESTIMATION ERRORS
FOR SCN1 AND SCN2 FOR DIFFERENT SNRS AND DIFFERENT METRICS

(NORM 2 (l2) AND OT).

×10−2 Espectrum EISRF Eshifts

SNR SCN 1 SCN 2 SCN 1 SCN 2 SCN 1 SCN 2
40 dB l2 0.026 6.281 0.534 96.45 1.326 142.3

OT 0.019 0.021 0.499 0.700 7.915 0.251
55 dB l2 0.017 6.302 0.309 96.58 0.790 308.5

OT 0.023 0.017 0.320 0.285 3.091 0.144
80 dB l2 0.016 6.301 0.306 96.51 0.669 308.5

OT 0.022 0.018 0.304 0.272 3.147 0.162

Future work will study other physical degradations, such as
stray light or radiometric errors, and will analyze the potential
interest of using other sparse regularizations [14] [15].
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