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Abstract—Hyperspectral imaging offers high spectral resolu-
tion for accurate material discrimination and target detection,
yet it is hindered by low spatial resolution and high opera-
tional costs. In this work, we present a novel framework that
leverages deep learning–based spectral reconstruction to convert
multispectral imagery into hyperspectral data with enhanced
spectral and spatial resolution, specifically tailored for target
detection. Our approach considers a spectral reconstruction
network named MST++ that has been initially trained on
multispectral–hyperspectral image pairs generated from AVIRIS-
NG by means of proper Spectral Response Functions. A targeted
fine-tuning procedure is then applied to optimize the recovery of
discriminative spectral features for small, camouflaged targets.
For the detection stage, reference-based matched filters exploit
the prior spectral signatures of the targets. Validation on real
multispectral data acquired by a UAV in field conditions demon-
strates that our method significantly enhances the detection of
small targets, achieving performance metrics intermediate be-
tween conventional multispectral and true hyperspectral imagery.
These results underscore the potential of spectral reconstruction
techniques as a cost-effective solution to augment target detection
capabilities in scenarios where high-end hyperspectral sensors are
not available.

Index Terms—Target Detection, Spectral Reconstruction, Hy-
perspectral, Multispectral.

I. INTRODUCTION

Hyperspectral (HS) and multispectral (MS) imaging
methodologies are distinguished by a range of distinctive prop-
erties, which result in a variety of advantages and limitations.
HS sensors acquire data in a number of narrow, contiguous
spectral bands, thereby providing detailed spectral information
that is indispensable for accurate material discrimination and
target identification [1],[2],[3]. However, this high spectral res-
olution is typically associated with lower spatial resolution and
significantly higher sensor and operational costs. Conversely,
MS sensors capture data in a limited number of broader
spectral bands, offering superior spatial resolution and reduced
cost, but at the expense of spectral discriminability. This trade-
off between resolutions (spatial and spectral) and cost is what
motivates the pursuit of methodologies capable of synthesizing
the spectral fidelity of HS imagery and the spatial precision
and cost-efficiency of MS data. A promising approach is the
application of spectral reconstruction (SR) techniques, which
aim to generate HS-like data from inputs with limited number
of bands [4]. Such methods provide a means to obtain imagery
that exhibits both high spectral and high spatial resolution

without necessitating the deployment of expensive HS sensors,
which are often unavailable in many operational scenarios.
Recent advances in deep learning have yielded several SR
algorithms capable of reconstructing detailed hyperspectral
information from lower-dimensional data sources, including
both RGB [5],[6] and MS images [7],[8]. Despite the fact that
this problem is inherently ill-posed, these techniques have been
proven to be effective for downstream tasks such as image seg-
mentation [9], classification [7] and unmixing [10]. Although
the literature predominantly emphasizes the effectiveness of
SR methods in segmentation and classification, relatively little
attention has been paid to their impact on target detection,
which is critical in both military and civilian applications
[11]. Target detection, particularly of small objects, presents
unique challenges because the subtle spectral differences that
discern targets from complex backgrounds are often obscured
in conventional MS images [12]. The recent work of Wang et
al. [13] proposes an approach to reconstruct MS from RGB
data aimed to improve the detection of extended (spatially)
and camouflaged targets. In the present study, we extend the
aforementioned research to detect small targets by leveraging
SR to obtain high spectral resolution HS images from MS data
in the Visible and Near-InfraRed (VNIR) spectral range. The
approach is specifically designed to improve the performance
of Spectral Signature-Based Target Detection (SSBTD) in
MS images. It uses a state-of-the-art deep learning–based SR
method, namely MST++ [14] followed by the well-known
Normalized Matched Filter (NMF, [15],[16]). We propose a
learning strategy based on simulated data for the SR model.
It includes a specific Fine-Tuning (FT) procedure to optimize
the reconstruction of the spectral signature of the target of
interest. Preliminary experimental results are shown that have
been obtained on an image acquired by a drone-based HS
camera. Specifically, starting from the HS data, an MS image
is obtained by considering the Spectral Response Functions
(SRFs) of 9 Sentinel-2 bands in the VNIR spectral range.
The MS image obtained serves as an input for the test of
the proposed procedure. The real data adopted are equipped
with a ground-truth map and spectral signatures of the targets
considered.

The work is organized as follows. Section II describes
the proposed approach and the training paradigm. Section III
describes the experiments performed and presents the results
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obtained. Finally, Section IV summarizes the main conclusions
drawn.

II. PROPOSED METHOD

A. Overview of the proposed approach

The processing chain of the proposed paradigm is summa-
rized in Figure 1a. It basically includes two modules. The first,
named the SR stage, implements a deep learning model based
on attention and transformer mechanism to reconstruct the HS
image from the MS input. The second, named the detection
module, is an SSBTD algorithm whose detection statistic after
thresholding provides the output detection map. A key aspect
of our approach is the fine-tuning procedure represented by
the dashed line in Figure 1a. It is specifically tailored to the
target of interest and aims at specializing the SR model to the
reconstruction of the spectral signature of that target. Fine-
tuning is motivated by the fact that target materials are often
rare and may not be well represented in the training set. The
details of the SR module, the training procedures, and the
fine-tuning approach are described in the following sections.

(a)

Fig. 1. Overview of the Proposed workflow. The diagram illustrates the com-
plete process flow, starting with MS data input, followed by HS reconstruction,
and ending in a detection module that generates the final decision map.

B. Hyperspectral reconstruction

Data-driven methods have rapidly gained traction due to
their ability to capture intricate spectral patterns directly from
data. For instance, several studies have demonstrated the ef-
fectiveness of convolutional neural networks and transformer-
based architectures for spectral recovery task of solving the
following problem:

Ĥ = f(X;Θ) (1)

where Ĥ ∈ RS×W×C is the estimated HS image and
X ∈ RS×W×c is the MS image. Here, S and W denote
the spatial dimension of the images and C and c denote
the spectral dimension of the images (with c ≪ C). The
function f(·;Θ), defined by the neural model’s architecture,
represents the parametric mapping whose parameters Θ are
learned during the training process by numerically solving the
following optimization problem:

argmin
Θ

L(f(X;Θ),H) (2)

where L indicates loss function used for the optimization and
H ∈ RS×W×C is the reference HS image.

For the purposes of this work, the SR module implements
the MST++ network that resulted the winner at the NITRE
Spectral Recovery challenge [5] for RGB to 31-band recon-
struction.

MST++ employs a transformer-based architecture to capture
long-range dependencies within the spectral domain. A key
innovation of MST++ is the treatment of each spectral channel
as an individual token. This design enables the network to
perform fine-grained inter-channel comparisons using multi-
head self-attention, thus effectively resolving subtle spectral
details. Its multi-scale design allows for analyzing features
at different resolutions, ensuring robustness against varying
levels of data granularity. The loss function L adopted in
the training phase of MST++ is the Mean Relative Absolute
Error(MRAE) [5]. Of course, MST++ architecture was adapted
to the specific case considered in this work in terms of number
of bands (c) of the input MS data and number of bands (C) of
the HS image. This adaptation involved modifying the input
and output interfaces, as well as resizing the dimensions of
the multi-head attention layers to accommodate the increased
spectral dimensionality.

C. Target detection

The target detection module processes the estimated HS
image along with a known reference signature that represents
the target of interest. For the purposes of this work the NMF
algorithm is adopted. It is widely recognized for its robustness
and optimality in maximizing the signal-to-noise ratio under
Gaussian noise conditions [15], [16].

The NMF detection statistic for each pixel is computed as:

yi =
s̃T x̃i

∥ s̃ ∥∥ x̃i ∥
, (3a)

s̃ = C
− 1

2

b (s−mb); x̃i = C
− 1

2

b (xi −mb). (3b)

where ∥ · ∥ is the vector norm, s ∈ RC denotes the target
spectral signature, xi ∈ RC denotes the ith image pixel,
mb ∈ RC and Cb ∈ RCxC are the mean vector and the
covariance matrix of the background, respectively. According
to Eq. 3, the detection statistic yi for the ith pixel measures
the cosine of the angle between the target spectral signature
and the pixel under test in the background whitened space.
According to that geometrical interpretation yi has values in
the range [−1, 1] where higher values correspond to a greater
similarity between the target and the pixel under test. Both
the background covariance matrix, Cb, and the background
mean vector, mb, are estimated from the entire image pixels
using robust statistical techniques that minimize the impact of
potential target pixels.

D. Training strategy

The training phase of the SR model requires a vast and
diverse dataset, including both MS and HS images. However,
the availability of such a dataset is highly unlikely in practical
applications. Therefore, we propose obtaining the necessary
data through simulation. Specifically, starting from a large
repository of high spectral resolution HS images and assuming
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the availability of the SRFs of both the MS sensor and the
desired HS sensor, the MS-HS image pairs are generated
by applying the aforementioned SRFs to each original high-
resolution HS image. For this purpose, the freely accessible
AVIRIS-NG image repository serves as a highly valuable
resource. AVIRIS-NG is an airborne HS sensor developed
by the Jet Propulsion Laboratory (JPL) that delivers high-
resolution imagery both spatially and spectrally. AVIRIS-NG
measures the incoming radiation at wavelengths ranging from
380 nm to 2510 nm at a spectral resolution of 5 nm. It captures
images with 600 cross-track samples with spatial sampling
from 0.3 m to 7.0 m, and it is ideal for simulating the image
pairs required for our work.

From the MS-HS image pairs generated according to the
aforementioned procedure, N image tiles of size 32×32 pixels
are extracted to train the general SR model. Then, using a
fine-tuning paradigm, specialized SR models are obtained for
each target of interest. Detecting small targets often involves
materials that are rarely represented in remote sensing images
compared to abundant background features. Although the large
dataset used for general-purpose reconstruction benefits overall
model performance, it may not adequately represent these rare
targets. Therefore, after the initial training, we propose to
perform a fine-tuning procedure on a smaller dataset. It is
obtained by randomly selecting n ≪ N pairs of tiles from the
original training set, where the spectral signature of the target
is artificially injected and then spectrally blended with the
background. The target’s position and size (in pixels) within
each MS-HS pair are randomly chosen to cover up to 20% of
the tile size. It is worth noting that fine-tuning is performed
on a reduced number of training samples, and this makes the
learning task less time-consuming than training the general-
purpose SR model.

III. EXPERIMENTAL ANALYSIS

A. Experimental dataset

For the experimental evaluation of our proposed approach
in a real scenario, we assembled a comprehensive dataset
collected during a dedicated acquisition campaign held in Italy
and using a Headwall Nano Hyperspec-VNIR camera mounted
on a UAV. The camera is a portable instrument that acquires
270 spectral samples within the 400–1000 nm spectral range
(VNIR). Those spectral samples are generally binned with a
factor of 3 to increase the Signal to Noise Ratio (SNR) thus
obtain HS images with C = 90 bands. During the campaign
we executed flights over a measurement field in which we
deployed several targets across the terrain. The flights were
performed at a 27 m altitude, with a ground sample distance
(GSD) of approximately 25 mm. The deployed targets had a
size of the order of a few centimeters. The collected HS data
are equipped with a ground-truth consisting of the position
in the scene and the spectral signature of each target. The
latter was obtained by the ASD FieldSpec 4 instrument that
is a handheld spectroradiometer operating in the 350–2500
nm spectral range. The experiment presented in this work
concerns one of the acquired image whose RGB representation

(a) Measurement Field

(b) Target 1 (c) Target 2 (d) Target 3 (e) Target 4

Fig. 2. Detail of the measurement field. (a) RGB view of the measurement
field acquired from 27 m using the aerial platform. Detailed views of the
targets: (b) target 1, yellow plastic plane; (c) target 2, green plastic tank; (d)
target 3, fake plastic plant; and (e) target 4, mimetic-colored board.

is reported in Figure 2a. The locations of the considered targets
in the image are highlighted in Figure 2a. Figures 2b–2d show
pictures of the considered targets, which include a plastic
yellow plane (Target 1), a plastic green tank (Target 2), a
plastic fake plant (Target 3), and a colored mimetic wooden
board (Target 4). In order to test the proposed procedure,
starting from the 90-band HS image we simulated a 9-band
MS image. To this purpose, we employed the SRFs of the
channels in the VNIR spectral range of an existing MS sensor,
i.e. Sentinel-2.

B. Training and fine-tuning

To simulate the training set for the general-purpose SR
model we selected images acquired by AVIRIS-NG sensors
from various regions worldwide, including Europe, the USA,
and Mexico and spanning the period 2018—2022. These
datasets cover diverse scenarios (urban, rural, coastal, and
mountainous areas). According to the strategy described in
Section II-D, starting from the selected AVIRIS-NG data and
using the SRFs of both the 9 Sentinel-2 bands and the HS
sensor adopted in the measurement campaign, MS and HS
image pairs were simulated. From the resulting dataset, we
extracted N = 6000 tiles of size 32× 32 pixels. Training was
performed on an NVIDIA GeForce 4090 GPU (24GB RAM)
using the Adam optimizer (with β1 = 0.9 and β2 = 0.99). The
learning rate was initially set to lr = 10−4 and dynamically
adjusted using a cosine annealing schedule. The network was
trained for 200 epochs, with a total time of approximately
24 hours. For each of the considered targets we generated
n = 600 MS-HS tiles pairs by injecting the corresponding
spectral signature measured by the spectroradiometer. With
reference to Target 1, Figure 3 shows and example of the tile
used for the fine-tuning. In the figure the target is highlighted
by the yellow box. The fine-tuning step was performed on the
same GPU, with a lower learning rate (lr = 10−5) and for 10
epochs, which took only about 10 minutes.

C. Experimental results and discussion

This section presents the results of the enhanced MS target
detection aided by the SR network. To quantitatively assess
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Fig. 3. RGB representation of a 32×32 patch used in the fine-tuning process.
The yellow box highlights the injected fake target, which has been spectrally
mixed with the background.

the performance of our proposed method, we first evaluate
the capability of the general-purpose SR network to spectrally
reconstruct the HS image using the Relative Root Mean Square
Error (RRMSE) evaluation metric, which can be interpreted
as the pixel-wise percentage error in the reconstruction of all
spectral bands relative to the corresponding reference pixels.
RRMSE is defined as

RRMSE(H, Ĥ) =

√∑K
i=1(Hi − Ĥi)2√∑K

i=1 H
2
i

(4)

where K = S × W × C indicates the cardinality of the
data cube while Hi and Ĥi are the ith pixels in H and Ĥ,
respectively.

Eq. 4 shows that RRMSE is evaluated on the HS image
obtained by the SR module taking as reference the original
HS image. We obtain a mean RRMSE = 0.032 for the overall
image, meaning that the reconstruction error is in average in
the order of 3.2%. It should be noted that the network commits
higher error in regions corresponding to tree shadows, which
are associated with a lower SNR.

Secondly we evaluate the target detection performance in
terms of Probability of False Alarm (PFA) that measures the
likelihood that the detection system will indicate a detection (a
positive) when there is actually no target present. Specifically,
for each target, we computed the threshold value correspond-
ing to the detection of 50% of the pixels occupied by that target
in the image. Then, we calculated the PFA as the fraction of all
image pixels for which the NMF statistic exceeds the derived
threshold.

Figure 4 shows the results in terms of PFA (in logarithmic
scale) for the four considered targets. Specifically, Figure 4, for
each target, shows log10(PFA) by applying the NMF algorithm
to a) the original 90-band HS image (blue bar), b) the 9-band
MS image (red bar), c) the HS image reconstructed by the
general-purpose SR network (yellow bar), and HS image after
fine-tuning (purple bar). The expectation is that detection on
the reconstructed target with specific fine-tuning provides a
better (i.e., lower) PFA compared to detection on the MS
image, but a worse value than detection on the reference
HS. In all cases, the log10(PFA) using the MS (red bars) is
higher than that obtained with the ground truth (blue bars).
Notice that an empty bar indicates that there were no false

Target 1 Target 2 Target 3 Target 4
-7

-6

-5

-4

-3

-2

-1

0

Fig. 4. Comparison of detection results on a logarithmic scale for four targets,
indicating the probability of false alarm when 50% of the targets are detected.
Blue bars represent detection using ground truth HS data; red bars show results
for MS data; yellow bars indicate detection on reconstructed HS data; and
purple bars represent detection on reconstructed HS data with fine-tuning.
The lower the value, the better the result. Note: an empty bar indicates no
false alarms (best result: PFA=0).

alarms (log10(PFA) = −∞). Detection on the SR HS data
(yellow bars) yields at least a detection rate similar to the
MS case (except for Target 2), while detection on the SR
HS data with fine-tuning improves performance in all cases
except for Target 2, where it remains equal to the MS case.
Notably, for Targets 1 and 4, the detection on the fine-tuned
data achieves performance equivalent to that of the original HS
data. This result highlights the capability of this approach to
improve target detection on MS data by leveraging the power
of deep spectral reconstruction networks, and it encourages
the research in the direction presented in this work.

IV. CONCLUSIONS

In this paper, we introduced a novel operational workflow
to enhance small target detection in multispectral data by
leveraging advanced spectral reconstruction and target de-
tection techniques. Specifically, we employed the MST++
method to reconstruct hyperspectral images from multispectral
ones, and we applied a Normalized Matched Filter for target
detection. An ad hoc fine-tuning procedure was also integrated
to optimize the deep learning-based spectral reconstruction
process, particularly for the detection of rare target materials.

Experimental validation on drone-acquired field data
demonstrated that our approach significantly improves de-
tection performance, particularly when assessed using the
probability of false alarm when 50% of the targets are detected
as the key metric. In most cases, detection on the reconstructed
hyperspectral images outperformed that on the original multi-
spectral data, underscoring the effectiveness of our integrated
workflow.

These promising results pave the way for further research.
Future work will focus on extending the approach to a broader
range of targets and operational conditions, with the aim of
further refining the methodology and validating its applicabil-
ity in diverse real-world scenarios.
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