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Abstract—Thanks to missions like Sentinel-1, with their short
revisit time (e.g. 6-12 days), a vast amount of Synthetic Aper-
ture Radar (SAR) images is now available. This abundance
is advantageous for the accessibility of time series and their
subsequent processing such as Multi-Temporal Interferometric
SAR (MT-InSAR) that allows for precise monitoring of land
motion. However, it poses challenges in managing such large
datasets efficiently while aiming to use them in a resource-
conscious and cost-effective manner. This contribution introduces
a novel Interferometric Phase Linking (IPL) approach for SAR
images eliminating the need to store all past acquisitions while
still leveraging their information. The method involves sliding a
temporal window over the time series, allowing the integration of
new SAR acquisitions. This approach is faster than traditional
IPL methods, whether applied offline or sequentially. Its validity
is demonstrated using a Sentinel-1 SAR image time series to
monitor Mexico City.

Index Terms—phase estimation, covariance matrix estimation,
sliding temporal window, SAR image, Interferometric Phase
Linking

I. INTRODUCTION

In the past decade, Interferometric SAR (InSAR) has un-
dergone several updates and advancements in the field of
Earth monitoring, particularly for monitoring land motion.
Seminal methods began with the simple comparison of two
SAR images of the same scene acquired at different dates (2-
pass InSAR). However, this approach reached its limits when
the time interval between the two acquired images becomes
too large, leading to a loss of valuable information due to
signal decorrelation. Subsequently, Multi-Temporal Interfero-
metric SAR (MT-InSAR) approaches demonstrated significant
improvements over 2-pass InSAR by leveraging time series
of SAR images. One pivotal technique in MT-InSAR, called
Interferometric Phase Linking (IPL), aims at estimating the
phase differences within the time series by exploiting the
expected phase structure of the Covariance Matrix (CM) of
local pixel patches. A seminal IPL algorithm was proposed
in [1], deriving an approximate Maximum Likelihood Esti-
mator (MLE) of the phases of the CM under the Gaussian
assumption. This approach relies on a plug-in estimate of the
coherence matrix (approaches aiming for a joint estimation
were proposed in [2, 3]). This algorithm led to many variants:
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overviews of the existing MLE-type IPL algorithms can be
found in [4, 5]. Recently, a unification was proposed in
[6] through the prism of a covariance fitting formulation:
the main idea being to restore the expected InSAR phase
structure from any plug-in estimate. This paradigm includes
the aforementioned MLEs as special case, but allows for
many generalizations (fitting matrix distance, CM plug-in,
regularization) that were shown to be beneficial in terms of
either estimation performance or computational complexity
[6-8].

Processing large SAR image time series is now becoming
increasingly complex: most IPL methods rely on computation-
ally expensive mathematical operations applied to CM, whose
size grows with each new acquisition. Traditional approaches
are not well-suited to integrate new images efficiently without
having to re-run the entire algorithmic process on the whole
data. In practice, this means repeatedly estimating large CM
and processing a massive volume of images each time a
new image is added to the time series. This issue could
be addressed by developing new efficient sequential IPL
algorithms, which, to the best of our knowledge, has not
been extensively studied in the literature. The few existing
approaches rely on processing temporal blocks within the time
series. The sequential estimator proposed in [9] consists of
dividing the SAR image time series into mini-stacks and
performing IPL within each one, to obtain a compressed
version, i.e virtual interferogram of each mini-stack. The re-
calibration of each phase of the whole time series is obtained
by performing a global IPL on compressed versions of each
mini-stack. This two-step approach is sub-optimal and prone
to error accumulation. Another sequential methodology was
proposed in [10, 11], allowing the integration of a single new
SAR acquisition at a time. This method builds a sequential
MLE in order to estimate only the parameters related to the
new image (variance, phase and coherence with historical
images), while leveraging the estimations already performed
on past images. The process has been extended to the covari-
ance fitting framework of [6] in [12], which allowed for the
sequential integration of new mini-stacks of images at once.
Both approaches [10, 11] and [12] achieve an accuracy similar
to traditional offline methods. However, they require to keep
the historical images and previous estimates of the CM, which
still hold major limitations in terms of computational load.
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Fig. 1. Stack of P co-registered SAR images where the local patch {x? i1
is represented in gray.

In this work, we propose a novel sequential IPL method
that overcomes the aforementioned issues. It involves sliding
a temporal window over the time series, allowing for the
integration of new SAR acquisitions. For each mini-stack
covered by the sliding window, we construct a regularized IPL
estimation problem involving a penalty term that preserves
historical information. The methodology is quite generic and
suited to any IPL formulation. In this paper, we focus on the
least-squares covariance fitting IPL of [6], for which we derive
a Majorization-Minimization (MM) algorithm. The validity of
the proposed method is then demonstrated using a Sentinel-1
dataset to monitor the subsidence of Mexico City.

II. SAR IMAGES TIME SERIES MODEL

For a given stack of P co-registered SAR images, we con-
sider a sliding spatial window of n pixels which corresponds
to the homogeneous spatial neighborhood denoted {x‘}7 ;,
i.e. xt € CF, for all i € [1,n]. Each pixel of the local patch

,zp]" e (1)
contains a time series of P images (see Fig. 1). The first and
second order moments are as follows
E(zmy) =0, Vm € [1, P] )
E(@m(2q)") = Vingomaqe’ "%, ¥ (m,q) € [1, PI* (3)

x' =[xl ...

The quantity v,,,, € [0, 1] denotes the coherence between the
pixel z,, and z4, 0.,,0, € RT corresponds to the standard
deviation of the pixel z, and z, respectively. 0,,,0, are
the phases at instant m and ¢, and j is the imaginary unit.
The covariance between the pixels is thus complex-valued,
and its magnitude depends on the standard deviations and
the coherence, while its phase difference is determined by
the difference in phases of SAR images. The corresponding
matrix notation of the covariance is as follows

S =0oww! 4)

where ¥ denotes the coherence matrix and w is the vector
containing the exponential of the complex phases, i.e. w =
[e?%, ... eI%"] € Tp, where

Tp = {w e CP||[w];| =1,Vi € [1, P]} )

is the P-torus of phase only complex vector.

III. INTERFEROMETRIC PHASE LINKING

IPL algorithms aim to estimate the phase differences of a
time series of SAR images, i.e. recovering w, from the set
{x"}™_, by leveraging the assumed CM structure in (4). In
this section, we detail existing methods that operate in both
offline and sequential modes, respectively.

A. Offline IPL

Exploiting in an offline way the CM of the whole time series
allows us to make use of all possible combinations of phase
differences in (3). To estimate w, from the set {x'}" ;, we
consider the COvariance Fitting Interferometric Phase Linking
(COFI-PL) formulation of [6]. The vector w is estimated such
it that provides the “best fit” between a plug-in estimate of
the CM (built form {x* 7_1) and its structure in (4). The
general form of the COFI-PL problem thus reads as follows

minimize fg; (w) £ (2, owwl)
subject to 61 =0 (6)
w e Tp

where d stands for any matrix distance. An interesting special
case comes form choosing the Sample Covariance Matrix
(SCM) £ =S = S, x;x/n as a plug-in estimate, and
setting d as the Kullback-Leibler (KL) divergence between
two Gaussian distributions. These settings in (6) yield (after
matrix manipulations) the following objective function

&L (w) = wh (mod(S) ™! o S)w. (7

This formulation corresponds the MLE estimator from
[1], which motivated many subsequent developments (see
overviews in [4, 5]). In this paper, we will build upon the
recent advances brought by [6-8, 13] for setting d and S in
the rest of this paper.

1) Choice of matrix distance d: Though any distance metric
could be considered, we will rely on the Euclidean distance, as
it demonstrated the best empirical results for IPL in [6, 7, 13].
This distance is defined as d%(A,B) = ||A — B||3, which,
when used in (6), reduces to

fe(w) = 2w (¥ o Z)w. ®)

A notable advantage of the Frobenius norm over the KL
divergence is that it eliminates the need of the CM inversion,
thus, reduces the computational load.

2) Choice of the plug-in estimate 3: In this work, we con-
sider a robust estimator called Phase-Only Sample Covariance
Matrix (PO) [14], which demonstrated significantly superior
performance when compared to the SCM in [6]. The estimate
is defined as

. 1S
Spo=-> y'y" ©)
1=1

where y = ®(x) and @7 : 2 = re’? — ¢, Furthermore, we
apply a tapering matrix [15], as it was shown to be beneficial
for IPL in [6-8]. Specifically, CM tapering involves setting
the covariance between two dates to zero when their time
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difference exceeds a certain threshold b, referred to as the
bandwidth. The tapering operator is defined as

1 if [i—4]<b
W(b)l|;; = 10
[ ( )} J {0 otherwise. (10)
The regularized estimator has, then, the following form:
2BW—PO:W(b)02PO- (11)

To conclude, the baseline for offline IPL will be produced in
this paper by solving (6) with fitting cost f; in (8) and plug
in estimate 2BW_pO in (11).

B. Sequential IPL

When a new SAR acquisition is integrated, the size of the
data vector increases (with one or more components being
added), as well as the CM. Integrating this new data in offline
IPL formulations requires solving (6) for all pixel patches,
and working on CM of increased dimension. The process in
computationally demanding, so several works addressed the
issue by developing sequential methods.

1) Sequential IPL from [9]: This method involves dividing
the SAR image time series into independent mini-stacks
on which IPL is performed separately. This is followed by
compressing each mini-stack into a virtual interferogram, on
which a global IPL is applied to calibrate the phase estimates
obtained in the first step. This two-step approach involving
a calibration post-processing appears to be sub-optimal and
prone to error accumulation over time. Furthermore, this
approach still requires storing the compressed interferograms
and processing data of increasing dimension, which limits its
widespread application

2) Sequential IPL from [12]: This method builds upon the
formulation (6) to integrate a mini-stack of m new SAR im-
ages. The new stack yields a time series that can be expressed

in block form as x = [x[4,x].,]T, and whose CM is still
structured as in (4) with phase vector w = [w ], Wl "

Integrating new mini-stacks over time then yields a sequence
of problems of the form
o . . d
minimize  fg(w)

Whnew

subject to - w = [w 1, Wi T (12)

WHCW G Tm

which can be efficiently solved in practice. This method allows
for achieving similar performance to offline IPL but at a lower
computational cost. However, this approach requires keeping
and storing the entire time series images (both historical and
newly acquired ones), as well as the corresponding CM and
phases.

IV. SLIDING IPL

The previous overview showed that certain limitations re-
main in the state-of-the-art sequential IPL, particularly in
terms of storage and computational efficiency. In the next
section, we present a novel approach that addresses these
challenges.

covariance matrix

of the entire time series (2)
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Fig. 2. Representation of the CM of the entire time series of SAR images
with a temporal window of size p, a stride k and an overlap ¢. The exponential
phases vector of the stack (j) is presented by W(;), and the corresponding

CM plug-in by f](j).

A. Methodology

The main idea of the proposed method is to slide a temporal
window of size p with a stride k, resulting in an overlap of
size £ = p — k, as illustrated in Fig. 2. In this setup w;)
denotes the estimated phases vector of each temporal stack,
and f](j) the corresponding CM plug-in. The common part
between the estimated phase vectors of the stack (j — 1) and
the stack (j), is denoted as wy(;_1), which is a vector of size
{. We then propose to solve the sequence of regularized IPL
problems, defined as

in Fa (W) + M(w;))

s.t. W) € Tp. (13)

where h is a penalty term that guarantees the phase estimates
to stay close to the previous ones within the window overlap.
In this work, we focus on the squared-distance regularization

Wy(i_
h(w)) = H( “ 1)> - W)

whose efficiency will be demonstrated in the experiment
section. We also emphasis that the choice of A appears not
to be critical, as we observed in our experiments that the
obtained solutions were quite stable within the range of tested
parameters. A notable feature of this sliding method is that it
eliminates the need to store all the historical images outside of
the overlap. Hence, each optimization problem in the sequence
remains of constant size p.

2

B. Algorithm

We propose a MM algorithm [16] to solve the optimization
problem (13). The first step of the MM algorithm, called
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“Majorization”, consists of finding the surrogate function
g(.[w®) that majorizes the objective function f(w).

f(w) < g(wlw®), YweT, (14)
with equality f(w(®) = g(w®|w®).
Lemma 1 The concave quadratic form

f:w— —wilHw
is majored, with equality at point w®), by

g(wlw®) = —2Re(w'Hw)

Using Lemma 1, the cost function in the problem (13) can be
majored by the surrogate function

t)y 0 & t) Wo(i_
9wy w(;)) = —Re <W5> (4085 0 ) w3} + 22 ( R D) ] >

AL ()
V)

(15)
The second step, called “Minimization”, consists of mini-
mizing the obtained function g(.|w(*)) to produce the iterate
w1 The obtained form of the surrogate can be minimized
using Lemma 2.

Lemma 2 The solution of the following minimization problem

minimize —Re(w W)

weT,
is obtained at w* = ®p(W) with & : x = re'? — ¢t
The resulting MM algorithm is summed up in the table
Algorithm 1.
Algorithm 1 MM algorithm for sliding IPL (13)
1: Input: f)(j) eCr
2: Compute : M = 4(|X ;] 0 ;)

3: repeat

4 Compute w'") = Mw;) + 21 " U~
: @) ©) 0

) ) _ (1)

5: Update of w ;) = @T{w(j)}

6: t=t+1

7: until convergence

8: Output: W(;) = wWeng €T

V. REAL WORLD EXPERIMENTS

To assess the performances of the proposed approach, we
apply it to a real-world dataset. This allows for the validation
of the proposed method in a real scenario.

A. Dataset

The dataset is composed of 30 Sentinel-1 SAR images ac-
quired between 03/08/2019 and 16,/07/2020 over the Mexico
City. This city is one of the most densely populated in the
world and has been subject of numerous studies, such as [17-
20], due to the rapid urbanization it has undergone. As a result
of this urbanization and the continuous population growth,
the demand for potable water has significantly increased,

leading to the extraction of water from aquifers. This practice
has caused widespread ground deformation and subsidence
across the city. The pre-processing of SAR images and the
phase unwrapping (using SNAPHU) are done using Sentinel
Application Platform (SNAP) software by European Space
Agency (ESA) [21].

B. Performance and comparison

We compare our results with the offline COFI-PL approach,
where tapering regularization is applied to the PO plug-in
of the CM. This combination of the distance metric and the
plug-in demonstrated optimal performance in phase estimation
[6]. We also compare our results with the sequential approach
proposed in [9], where we choose the same stack size p = 5 as
in our approach. We do not compare the obtained results with
those of the [12], as their results have demonstrated similar
performances to the offline approach COFI-PL of [6]. We use
the Structural SIMilarity index (SSIM) (measuring the simi-
larity between two images) for the unwrapped interferograms’
and the colinearity criterion [22] (evaluating the signal to noise
ratio) for the wrapped interferograms.

Method Colinearity | SSIM Time
SI-IPL 0.90 0.94 3.9 min
Sequential IPL [9] 0.84 0.85 17.1 min
COFI-PL [6] 0.91 Ref 92.4 min
TABLE I

QUANTITATIVE VALUES FOR THE EVALUATION OF THE ESTIMATED PHASES

In Fig. 3, it can be seen that the proposed approach (first
and fourth column) yields similar results to the offline COFI-
PL approach with BW-PO as a plug-in for the CM (second
and fifth column). This observation is consistent with the
colinearity and SSIM values obtained for both (wrapped and
unwrapped phases) with both methods (Table I). The proposed
approach (first and fourth column) yields better results than the
Sequential Estimator proposed in [9] (third and last column),
with better colinearity (better Signal-to-Noise Ratio (SNR))
and higher SSIM (closer resemblance to the offline approach,
represented in the table by Ref).

C. Complexity and computation time

The complexity of these methods based on covariance
fitting with the Frobenius distance depends on the number
of images used, as it does not require costly mathematical
operations, such as matrix inversion, which are common in
most IPL algorithms [1-3, 23, 24]. The complexity of the
offline approach COFI-PL is of the order O(I?), whereas that
of the proposed approach is O(p?). The Sequential Estimator
[9] has a complexity around O(p* + i®), where i denotes the
number of compressed historical blocks, in other words the
complexity of this approach depends not only on the number
of new images, but also on images from the past, so at some
point this ¢ will become enormous. On a machine with a

'In InSAR, wrapped interferograms show phase values within a —7 to
T range, resulting in a cyclic pattern due to phase ambiguity. In contrast,
unwrapped interferograms resolve this ambiguity by converting phase into a
continuous surface.
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Fig. 3. The longest temporal baseline interferograms estimated by SI-IPL, COFI-PL [6] and the Sequential Estimator [9] are presented, with the first three
columns showing the wrapped phases and the second three columns displaying the unwrapped phases. Different patches are presented by line.

95—core CPU running at 2.2 GHz and 125 GB of RAM,
where computations are executed in parallel across the cores,
the proposed approach achieves significantly faster processing
time than the offline COFI-PL approach and the Sequential
Estimator. The computation time is provided in Table I.

VI. CONCLUSIONS

In this paper, we introduce a novel approach for SAR
phase estimation that can incorporate new images based on
covariance fitting approach in IPL. The proposed approach
offers achieving comparable performance to the offline COFI-
PL method. It offers reduced computation and processing time
without the need to store past images, while still leveraging
the information they provide. Our approach can be applied to
any cost function and any plug-in along with regularization
possibility. A real-world case study on the subsidence of
Mexico City is conducted to demonstrate the relevance and
effectiveness of our approach.
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