
Deep Learning for Reconstructing Hyperspectral
VNIR-SWIR Data from Multispectral Sources

1st Michael Alibani
DII, University of Pisa

56122 Pisa, Italy

michael.alibani@unipi.it

2nd Martina Pastorino
DITEN, University of Genoa

16145 Geona, Italy

martina.pastorino@edu.unige.it.

3rd Gabriele Moser
DITEN, University of Genoa

16145 Geona, Italy

gabriele.moser@unige.it.

4th Nicola Acito
DII, University of Pisa

56122 Pisa, Italy

nicola.acito@unipi.it

Abstract—Hyperspectral satellite data are crucial for applica-
tions such as environmental monitoring and precision agriculture
due to their rich spectral information. However, hyperspectral
data typically suffer from limited spatial resolution and are
less readily available compared to more common multispectral
data. This study explores the use of attention-based spectral
reconstruction techniques, specifically MST++ and Restormer,
to simulate high spatial and spectral hyperspectral data in
the VNIR-SWIR from multispectral imagery. High-resolution
multispectral and hyperspectral image pairs generated from
AVIRIS-NG aerial data were used for training, allowing for
the reconstruction of hyperspectral data that closely matches
the original measurements. These results suggest that spectral
reconstruction techniques can significantly enhance the utility
of existing multispectral datasets for hyperspectral dependent
applications and predict high-resolution hyperspectral data from
multispectral inputs. This approach is especially useful for
generating simulated data for missions still in development. For
instance, PRISMA-2G data can be modeled using Sentinel-2 data.

Index Terms—Spectral Reconstruction, Restormer, MST++,
AVIRIS-NG, PRISMA, Sentinel-2.

I. INTRODUCTION

Hyperspectral (HS) satellite data are a valuable resource for

understanding Earth’s complex environmental systems due to

its high spectral resolution, which enables precise identifica-

tion and analysis of materials. Consequently, it plays a crucial

role in applications such as environmental monitoring [1],

precision agriculture [2], mineral exploration [3], and urban

planning [4]. The importance of HS satellite data for Earth

observation is demonstrated by current operational missions

such as PRISMA [5], ENMAP [6] and the satellite programs

planned for the near future such as PRISMA second generation

(PRISMA-2G [7]) and CHIME [8].

In the preparatory activities for a new mission, having a

data simulation tool is essential for consolidating mission re-

quirements, validating the operational processor, and assessing

the effects of various instrumental and environmental param-

eters. In addition to system design and analysis, simulating

HS systems is crucial for developing effective data process

techniques. By mimicking real-world conditions, simulations

provide a controlled setting for designing, testing, and refining

algorithms that extract valuable information from HS data. For
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the analysis of instrumental radiometric and spectral responses,

simulated 1-D radiance spectra can serve as a basis. However,

when evaluating parameters related to the instrument’s spatial

performance, such as the Point Spread Function (PSF), the

keystone effect, or spectrometer coregistration, the spatial

dimension must also be considered. The initial challenge in de-

veloping an end-to-end HS simulator involves generating a HS

reflectance image with a spatial resolution higher than that of

the system being simulated. To have realistic surface patterns

for the simulated images, reflectance data from existing remote

sensing missions can be used. The majority of existing satellite

HS data have low spatial resolution, making them unsuitable

for simulating reflectance images needed to assess the spatial

performance of instruments. A possible solution to the problem

is to use existing high spatial resolution multispectral (MS)

satellite data along with Spectral Reconstruction (SR, [9])

techniques to infer the spectral information related to the target

HS sensor.

Aiming to develop an end-to-end simulator for data of the

PRISMA-2G HS mission, we intend to apply SR algorithms to

obtain HS images from Sentinel-2 (S2) MS data. Specifically,

our goal is to obtain HS images that span 230 spectral

bands, starting with the ten S2 bands (B2-B8, B8a, B11, and

B12) at higher spatial resolution. These S2 bands cover the

spectral range observed by the PRISMA-2G instrument, from

the Visible and Near InfraRed (VNIR) regions to the Short

Wave InfraRed (SWIR) region. Deep Learning (DL) based

SR techniques have shown remarkable success, particularly in

the task of reconstructing HS images from data with lower

spectral dimensionality, such as red, green, and blue (RGB)

images that consist of three channels. Approaches such as

AWAN [10], HSCNN [11] and DRCRNet [12], as well as

transformer-based models [13], have demonstrated that high-

quality HS information can be extracted from RGB images.

Recent studies have shown that SR methods were also effective

in reconstructing remotely sensed images from MS to HS

however they are mainly limited to the VNIR spectral range

[14][15]. In this work we test the effectiveness of a selection of

DL based SR techniques to obtain high-resolution HS images

from MS data considering the overall VNIR-SWIR spectral

range that will characterize the PRISMA-2G data. Specifically,

we consider two recent networks, Restormer [16] and MST++

[13], which have demonstrated strong performance in SR
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using RGB images. We apply these networks to our case of

reconstructing PRISMA-2G data from S2 images to produce

data with high spatial and spectral resolution that is useful

for simulation purposes. For both training and testing the

networks, S2 and PRISMA-2G image pairs are simulated

starting from airborne AVIRIS-NG imagery [17] using the

nominal Spectral Response Functions (SRFs) of S2 [18] and

PRISMA-2G [5] instruments, respectively.

The work is organized as follows: Section II introduces

spectral reconstruction with a focus on MST++ and Restormer.

Section III describes the generation of the dataset and the

application of spectral reconstruction methods to it. Finally,

Section IV presents both qualitative and quantitative evalua-

tions of the spectral reconstruction.

II. SPECTRAL RECONSTRUCTION

The process of recovering HS images from MS images,

is a complex and highly ill-posed problem. This challenge

comes from the need to estimate a high-dimensional spectrum

from a lower-dimensional observation, which can lead to

significant difficulties in achieving accurate results. Over the

years, researchers have developed various methods to address

this issue, achieving remarkable results in reconstructing HS

images from images that has a lower spectral dimensionality.

SR approaches can be categorized into two classes: prior-based

methods and data-driven methods.

This work focuses on data-driven approaches that have

gained significant traction in recent years within the computer

vision community. Neural networks can automatically learn

complex patterns from data and often outperform traditional

methods in both accuracy and generalizability. For example,

HSCNN+ [11] uses dense blocks and a novel fusion scheme

to enhance spectral recovery. AWAN [10] improves spectral

detail with an Adaptive Weighted Channel Attention (AWCA)

module. Zhao et al.’s HRNet [19] employs a PixelShuffle layer

to boost inter-level interactions and accuracy in HS images

reconstruction. Additionally, MiRNet [20] leverages a multi-

scale residual learning framework to effectively capture and re-

fine features at different scales, further enhancing the quality of

HS images reconstruction. Here, we apply two state-of-the-art

methods from the NITRE Spectral Recovery challenge [13]:

Multi-Scale Transformer++ (MST++) and Restoration Trans-

former (Restormer) that represent cutting-edge approaches to

HS images reconstruction, each offering unique capabilities

tailored to different aspects of image restoration.

MST++ is specifically designed for HS data and employs

a Transformer-based architecture optimized for spectral infor-

mation. The model utilizes multi-head self-attention to capture

both long-range dependencies and self-similarities within the

spectral domain. A key innovation of MST++ is its treatment

of each spectral channel as an individual token within the self-

attention mechanism. This approach allows MST++ to perform

sophisticated inter-channel comparisons, which is crucial for

accurately reconstructing spectral features. The multi-scale

design of MST++ enables it to analyze features at different

resolutions, enhancing its ability to resolve fine spectral details

and adapt to varying levels of data granularity. Additionally,

MST++ benefits from a high level of spectral sensitivity, which

is critical for tasks that require detailed spectral discrimination.

Restormer, on the other hand, is designed with a broader

scope, focusing on high-quality image restoration across vari-

ous domains, including HSI. Restormer employs self-attention

mechanisms to effectively integrate both local and global infor-

mation, addressing spatial and spectral details simultaneously.

Unlike MST++, which is heavily focused on the spectral

dimension, Restormer uses a dual approach to balance the

preservation of spatial structures and spectral accuracy. Its

architecture includes advanced mechanisms for spatial feature

extraction and noise reduction, making it highly versatile for

diverse restoration tasks. Restormer’s design also incorporates

sophisticated normalization techniques and attention layers

that improve its performance in fine-grained image restora-

tion and enhance its robustness to different types of image

degradation.

III. RECONSTRUCTING HYPERSPECTRAL DATA FROM

MULTISPECTRAL

As discussed in Section I, the objective of this work is

to evaluate the effectiveness of state-of-the-art MST++ and

Restormer networks in retrieving HS remote sensed data from

corresponding MS data. Specifically, this case study focuses

on extrapolating a high-resolution PRISMA-2G data, which

consists of 230 spectral bands, from S2 data, which has only

10 spectral bands.

It is important to note that real S2 images have four spectral

channels at 10 m Ground Sampling Distance (GSD) and six

channels at 20 m GSD, while the PRISMA-2G instrument in

the stripmap operational setting will provide data over 230

spectral channels in the range 400 − 2505 nm with a 30 m

GSD.

This work starts from the assumption that it is possible to

obtain 10-bands S2 data at 20 m GSD by downsampling the

higher-resolution bands, or to obtain 10-bands S2 data at 10 m

GSD using one of the well-established spatial super-resolution

methods [21]. S2 images are good candidates for producing

synthetic PRISMA-2G reflectance data with a spatial resolu-

tion higher than the nominal one. Therefore to demonstrate

the feasibility of producing corresponding HR PRISMA-2G

data from S2, we used AVIRIS-NG imagery for simulating

the HR image pairs that are necessary for training, validation

and testing.

In our experiments, we begin by implementing the MST++

and Restormer networks as described in [22]. These networks

were originally designed to reconstruct a 31-band HS image

from its RGB version. For our application, we adapted these

networks to reconstruct a 230-band HS image from a 10-band

MS image by adapting the input and output interfaces, as

well as the dimensions of the multi-head attention layers to

accommodate the increased spectral dimensionality. The image

pairs for training and testing the networks are generated as

follow.
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A. Dataset Generation from AVIRIS-NG

Training DL models requires a large and sufficiently diverse

dataset for effective performance. In this study, we utilize the

AVIRIS-NG product to generate a suitable dataset composed

of high-resolution MS and HS image pairs. AVIRIS-NG is

an advanced aircraft-borne HS sensor that utilizes HR spec-

troscopy to acquire precise measurements of solar-reflected

radiation. It operates across a wavelength range from 380 nm

to 2510 nm, sampling the spectrum at approximately 5 nm.

The sensor utilizes a pushbroom configuration to collect data

as spectral images, with the spatial sampling determined by

flight altitude. As a result, AVIRIS-NG is capable of achieving

ground resolutions ranging from approximately 0.3 m at low

altitudes to around 7.0 m at higher altitudes. The character-

istics of this dataset make it well-suited for generating high-

resolution image pairs for our application. The comprehensive

AVIRIS-NG dataset is freely accessible via NASA’s AVIRIS

Data Portal [23].

We selected images obtained from AVIRIS-NG sensors

across diverse regions worldwide, covering various years be-

tween 2018 and 2022. These images encompass a variety of

landscapes, including coastal areas, urban centers, mountain-

ous regions, and rural settings. During the selection process,

we excluded regions that had cloud cover, corrupted data,

or were completely covered by water. Using the AVIRIS-NG

dataset as our baseline, we simulated high-resolution data for

both S2 and PRISMA-2G by applying the SRF of each sensor.

This process involved convolving the AVIRIS-NG data with

the SRF of S2 and PRISMA to replicate how these sensors

would capture the same scene at high resolution. From the

dataset, we extracted approximately 3000 image tiles, each

measuring 128×128 pixels, which were divided into a training

set (80%) and a test set (20%). Each image tile consists of

atmospherically corrected spectral reflectances with a 12-bit

radiometric resolution, appropriately scaled within the range

[0,1]. The training data are augmented with random rotation

and flipping.

The training process was conducted on a single machine

equipped with a NVIDIA GeForce RTX 4090 GPU with

24GB RAM. The networks were trained using Adam optimizer

using the following optimization parameters: β1 = 0.9 and

β2 = 0.99. The learning rate is initialized as lr = 10−4 and

a Cosine Annealing scheme is adopted to dynamically adjust

the learning rate during training. The models were trained for

200 epochs each. The duration of training for each network

model was approximately 48 hours.

IV. RESULTS

This section presents the results of the two SR methods for

generating high-resolution HS images. Both qualitative and

quantitative analyzes are conducted: the qualitative evaluation

assesses the visual fidelity of the reconstructed images, while

the quantitative analysis provides objective performance met-

rics.

To quantitatively evaluate the performance of our proposed

methods, we employed three metrics, two of which were

TABLE I
MEDIAN RRMSE, RMSE, AND MRAE VALUES FOR EVALUATING THE

PERFORMANCE OF MST++ AND RESTORMER NETWORKS ON THE TEST

SET. THE ARROWS INDICATE THE DIRECTION OF THE BETTER VALUE. THE

BOLD INDICATES THE BEST RESULTS.

Method MRAE (↓) RMSE (↓) RRMSE (↓)

MST++ [13] 0.0485 0.0076 0.0359

Restormer [16] 0.0473 0.0067 0.0324

Grassland

Bare Soil

(a) RGB - GT (b) RGB - MST++ (c) RGB - Res.

(d) FC - GT (e) FC - MST++ (f) FC - Res.

Fig. 1. Visual comparison of image reconstruction methods in both RGB and
FC representations. Wavelengths 470.75 nm, 546.27 nm, and 631.90 nm are
utilized for RGB, whereas wavelengths 1008.07 nm, 1646.92 nm, and 2143.18
nm are used for FC: (a) Ground truth simulated HR PRISMA image (RGB);
(b) Image reconstructed by MST++ (RGB); (c) Image reconstructed by
Restormer (RGB); (d) Ground truth simulated HR PRISMA image (FC); (e)
Image reconstructed by MST++ (FC); (f) Image reconstructed by Restormer
(FC).

recommended by the 2022 Spectral Recovery Challenge [24].

The first metric is the Mean Relative Absolute Error (MRAE),

which calculates the pixel-wise relative difference between

the reconstructed and ground-truth images across all spectral

channels, providing a measure of the relative error at each

pixel. The second metric is the Root Mean Square Error

(RMSE), which quantifies the average magnitude of the errors

0

0.05

0.1

0.15

0.2

(a) Error Map - MST++

0

0.05

0.1

0.15

0.2

(b) Error Map - Restormer

Fig. 2. RRMSE maps of the reconstructed images with respect to the Ground
Truth: (a) Relative error map of MST++; (b) Relative error map of Restormer.
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(b) Bare Soil

Fig. 3. Comparison of reflectance values obtained after SR: spectral signatures
are extracted from the pixels highlighted by cyan and yellow dots in Fig. 1a.
(a) Spectral signatures of a grassland pixel, compared between MST++,
Restormer, and the ground truth; (b) Spectral signatures of a bare soil pixel,
compared between MST++, Restormer, and the GT.

between the reconstructed and ground-truth by computing the

square root of the mean squared differences. Finally, the third

metric is Root Relative Mean Square Error (RRMSE), which

expresses the reconstruction error normalized by the root mean

square value of the reference image.

Table I displays the median values of the proposed metrics

to evaluate the performance of the MST++ and Restormer net-

works on the test dataset. All metrics indicate that Restormer

outperforms MST++ (even if with a small margin) in recon-

structing the 230-bands HS data from 10-bands MS input,

even though MST++ resulted the top-performing network on

the ARAD1K dataset during the 2022 Spectral Reconstruction

Challenge.

Fig. 1 presents the results of SR when applied to an image

comprising both natural and man-made elements, having a

spatial dimension of 512×512. It is important to note that the

network was fed with an MS image derived from an AVIRIS-

NG image that was not included in the training set, thereby

serving as a tangible test of generalization. In order to improve

the visual comparison, we propose both an RGB representation

(Figs. 1a - 1c) and a False Color (FC) representation (Figs. 1d -

1f) of the reconstructed images in relation to the corresponding

Ground Truth (GT) images. Wavelengths 470,75 nm, 546,27

nm, and 631,90 nm are utilized for RGB, whereas wavelengths

1008,07 nm, 1646,92 nm, and 2143,18 nm are used for

FC. A visual inspection of the generated images reveals no

perceivable macroscopic artifacts. However, relying solely on

RGB and FC visual comparisons is insufficient for a com-

prehensive evaluation. Figure 2 presents RRMSE maps that

illustrate the distribution of reconstruction errors and pinpoint

regions where the networks underperform in accurately recon-

structing the image. These maps enable a detailed, pixel-by-

pixel analysis of the RRMSE values across the entire image.

RRMSE values thus represent a relative error with respect to

the reference pixel, where 0% represents no error and 100%
represents maximal error. Fig. 2 illustrates maps limited on

a scale [0, 0.2], in order to facilitate improved visualisation,

ranging from blue to yellow, respectively. Although the error

distribution across the maps is quite similar, map in Fig. 2b

shows a stronger shift towards blue, indicating a generally

better reconstruction. This is further supported by the average

error values, which are 0.072 for Fig. 2a and 0.059 for Fig.

2b. Notably, regions with lower Signal-to-Noise Ratio (SNR),

such as water bodies, exhibit higher reconstruction errors. For

instance, see the bottom left-hand corner of Fig. 2a.

To further analyze the study’s results, the authors extracted

reflectance values from two pixels in the GT image and

their corresponding pixels in the reconstructed image. This

enabled a direct comparison of the overall spectral signatures.

The selected samples are indicated in Fig. 1a by a cyan

marker (representing a grassland sample) and a yellow marker

(representing a bare soil sample). Fig. 3 shows the spectral

comparison, with Fig. 3a displaying the reflectance values for

the grassland sample, and Fig. 3b for the bare soil sample.

The results indicate that both networks successfully re-

construct the spectral profile of the HR HS ground truth

data across the entire VNIR-SWIR spectral range. However,

a closer inspection of the Restormer profile (green line),

compared to the MST++ profile (red line) for both selected

samples, reveals a closer match to the ground truth (black line),

thereby confirming previous findings. Notably, in the bare soil

case, both networks exhibit higher errors beyond λ = 1100
nm. This can be attributed to the fact that the HR S2 data

contains 8 spectral bands within the VNIR region, but only 2

bands within the SWIR, making it more challenging for the

networks to accurately interpolate data in this spectral interval.

V. CONCLUSION

In conclusion, this work explored the use of MST++ and

Restormer DL networks for the spectral reconstruction in the

VNIR-SWIR spectral interval of high-resolution HS data from

MS input. The data pairs used in this work to train the

networks were generated from AVIRIS-NG using proper SRFs

to simulate high-resolution S2 and PRISMA-2G datasets.

Both networks proved to be effective in extrapolating detailed

spectral information, demonstrating their potential to generate

high quality HS data (from MS inputs) that could be used

for simulation purposes of future missions. Future work will

focus on applying these methods to real-world MS datasets

and enhancing their capability to predict HS data that will be

available in the future.
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