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Abstract—Pulse compression is employed in radar applications
when it is necessary to jointly achieve sufficient sensitivity and
good range resolution while employing low peak transmit power.
Nonlinear frequency modulated waveforms are often considered
to pursue these objectives. Pulse compression performances are
typically measured based on the extension of the mainlobe and
on the level of the sidelobes of the pulse autocorrelation function
if a matched filter is used in reception. If not, the same criterion
is used, applied to the output of the receive filter that is not
matched to the pulsed waveform used in transmission. Several
design methods have been proposed in the literature differing in
the parametrization of the pulse, the optimization methods, and
the requirements derived from the applications. In this paper,
we propose a novel method of pulse compression based on the
expression of the instantaneous frequency by means of cubic
spline interpolation and on the optimization of an objective
function related to the sidelobes energy. Several waveform design
examples are shown, demonstrating how the proposed method
allows extremely low sidelobes to be achieved, in comparison
also to existing algorithms.

Index Terms—Pulse compression, nonlinear frequency modu-
lated waveform, spline interpolation, matched filter.

I. INTRODUCTION

In several radar applications, the peak power required for the
transmit pulse to achieve the desired range resolution, along
with the total energy needed for the desired sensitivity or
probability of detection of targets, may be excessive. In such
cases, pulse compression is the solution. The basic principle
of pulse compression is straightforward: a phase or frequency
modulation is introduced in a constant amplitude transmit
pulse with a given duration T, so that its autocorrelation
function (ACF) changes from a triangular shape to one of the
same duration (2T), but featuring a central narrow mainlobe
and lower sidelobes. Amplitude tapering (windowing) can also
be introduced in order to further reduce the level of the
sidelobes, at the expense of some peak level reduction and
broadening of the mainlobe [1].

This is true if one assumes that the receiver filter is matched
to the waveform used in transmission. Using a mismatched
filter at the receiver is an alternative [2] [3] [4]. In this case, the
receiver output is given by the cross-correlation between the
transmit waveform and the impulse response of the receiver,
so that the overall system performance depends on the design
of both the transmit waveform and receive filter response.
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The requirements imposed on the design process depend
on the application. Extremely low sidelobes of the receiver
filter output are necessary when dealing with distributed targets
featuring a normalized radar cross section highly variant with
range. This can be encountered, for instance, in weather radars
or in synthetic aperture radars.

A. Related work

Most studies on radar pulse compression have traditionally
focused on the classical linear frequency modulated (LFM)
rectangular pulse [1]. Early research by Fowle [5], as well
as more recent studies (e.g., [6] [7] [8] [9]), have explored
nonlinear frequency modulation (NLFM) pulses, leveraging
the principle of stationary phase for their design. In [10], the
stationary phase approach has been used in an iterative proce-
dure aiming at minimizing the sidelobes energy (waveforms
designed with that approach were used in [11] for the analysis
and compensation of the effects of nonlinearities in power
amplifiers).

The basic observation ruling a good pulse compression
design is that the instantaneous frequency should deviate from
linearity at the leading and trailing edges, where the highest
frequency variations occur. This aspect was first noted by
Cook and Paolillo [12] as beneficial for sidelobe suppression.
This principle has been widely acknowledged in the literature
and stated in several ways by using different parametric
definitions of the pulse instantaneous frequency. For instance,
a combination of linear and either tangent (LFM/tan-FM) or
hyperbolic functions were used in [13] and [14], respectively;
a tangent function was instead proposed in [15]. Piecewise
polynomial functions to model the instantaneous frequency
have been used in several studies [16] [17] [18]. Piecewise
parabolic functions were used in [19], whereas the design was
based on Beziers curves in [20].

A proper waveform parametrization along with the selection
of effective solvers for the resulting objective function opti-
mization are of paramount importance for the success of the
design procedure. As to the objective function, its construction
is often based on the waveform autocorrelation function,
corresponding to the output of a matched filter receiver when
the input is not affected by Doppler. As to the solvers, a variety
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of techniques have been chosen in the literature: for instance,
genetic algorithms in [20] [8] and simulated annealing in [7].

In this work, we propose a new method to design a NLFM
pulse based on the modeling of the instantaneous frequency
through splines functions. The parameters to be optimized
are the values of the instantaneous frequency at nonuniformly
spaced knots and the function that is searched for is obtained
by means of cubic spline interpolation. The position of the
knots is fixed, so that the instantaneous frequency is a lin-
ear function of the free parameters. The proposed approach
presents the following advantages: first, the “amount” of non-
linearity used to define the waveform is limited, and this facili-
tates the optimization process; second, the degree of regularity
provided by the cubic spline interpolation is also the key to
achieve high-performance solutions. Several examples of pulse
compression waveform design are presented, showing that the
proposed approach outperforms other existing algorithms used
for a comparison.

The paper is organized as follows: in Section II, the pro-
posed method is described; in Section III some examples
of waveform design are shown and compared to existing
techniques; in Section IV some concluding remarks are drawn.

II. PROPOSED METHOD

In this section, the proposed method to design a pulse
compression waveform is described. It is assumed that the
radar system uses a matched filter receiver, so that its output is
proportional to the autocorrelation function of the transmitted
waveform. First the signal model is introduced.

Let s(t) be the complex envelope of the transmitted wave-
form, where

s(t) = w(t)e?? M) (1)

for —Z <t < L, where T is the pulse duration, w(t) is the
pulse shape, and ¢(¢) is the phase modulation. The latter can
be expressed as

o(t) =2m / fila) da, 2)

nlN

where f;(t) is the pulse instantaneous frequency. The function
fi(t) is actually at the basis of our approach to waveform
design. In fact, the instantaneous frequency is derived from a
few parameters by means of cubic spline interpolation.
Assume that f;(t) is an odd function, so that we need to
design only the positive portion. Assume also that, in the
positive interval, f;(¢) ranges from 0 to %, where Af is
the total frequency sweep. Consider a set of N 42 fixed knots
{to,t1,...,tn,ty+1} in the time domain, with ¢, = 0 and
tny1 = 55, whereas ¢, = vy, for n = 1,2,..., N, with
v, a set of instantaneous frequencies to be determined. In
our design procedure, f;(t) is the cubic spline interpolation
of the points (t,,v,), n = 0,1,...,N,N + 1. It is well-
known that, for all ¢ € [0, 2], f;(t) is a linear function of the
values v,,, and using (2) and (1), we can conclude that s(t) is
a nonlinear function of {v4,vs,...,vN}. A graphical sketch

of a possible choice of the knots ¢,, the values v, and the
resulting interpolating function f;(¢) is shown in Fig. 1.
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Fig. 1. A possible arrangement of the knots ¢, the respective values vy,

and the interpolating function f;(¢) (for the sake of simplicity, the variables
are shown in a normalized scale).

The matched filter output is proportional to

(oo}

/ s*(t)s(t + 7) dt. 3)

— 00

R(7) =

The searched solution is a waveform s(¢) whose autocor-
relation function R(7) features a narrow mainlobe and low
sidelobes. Assume that the mainlobe is located in the in-
terval €2, = (—o,0) and that the sidelobes are located in
Qs =(—Z,-0) U (0, L). The quantity o is a value given as
input to the design procedure.

The cost function we would like to minimize is the so
called integrated sidelobe level (ISL), that is the energy of
the sidelobes normalized to the total energy of the matched
filter output, i.e.,

[ |R(T)|? dr

ISL = 7”; . 4)
[ |R(7)|2dr
"y

Since s(t) and, consequently, R(7) and ISL, are nonlinear
functions of the unknowns {vy,vs,...,vxN}, nonlinear opti-
mization methods must be used to achieve the final solution;
therefore, an initial point must be given to the solver. In our
procedure, the knots {¢1,ts,...,tx} have been selected as
nonuniformly spaced between 0 and L, with a more dense
concentration around %, where a higher nonlinear behavior
of fi(t) is expected. To determine initial values for v,, a
pulse compression waveform was designed by employing a
standard technique (we used the classical stationary phase
method proposed by Fowle [5]). After that, the instantaneous
frequency was extracted and sampled in the instants ¢, to
achieve a first guess of v,,. As to the solver used to achieve
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the optimal solution, the unconstrained minimization routine
fminunc included in Optimization Toolbox by Matlab® was
employed.

We would like to point out that the objective function
ISL is related to the energy of the sidelobes, which is
certainly a proper metric in the case of distributed targets.
Alternatively, the peak-to-sidelobe level (PSL), defined as
PSL = 20log;, max |R(7)/R(0)], is also a commonly used

indicator of the quality of a waveform design. The PSL and the
ISL are usually aligned; in our experimental results we used
both the ISL and the PSL in order to compare the outcomes
of our proposed method and other design algorithms in the
literature.

III. TEST RESULTS

In this section, some examples of pulse compression wave-
form design obtained with the proposed method are shown and
its performance is compared to that of some existing methods.

As already mentioned, some parameters need to be defined
before running the proposed method. For example, the number
of knots of the spline interpolation, as well as their positions,
are not variables to be optimized, but are fixed. The null-to-
null width of the mainlobe ,, = (—o,0) determines the
range resolution of the system and strongly influences the
performance of the design in terms of PSL and ISL; as in [10],
such width is denoted as «(2/Af), where « is a parameter
and 2/Af is the null-to-null mainlobe width relative to a
linear frequency modulated (LFM) pulse with a total frequency
sweep Af (equal to the LFM pulse bandwidth if the product
Af - T is sufficiently high). The amplitude shaping window
is another important feature of the designed waveform: in our
design, we used a Tukey window, whose roll-off parameter r
rules the width of the leading and trailing edges.

In Fig. 2, the PSL and the ISL of the ACF of the designed
waveform are plotted vs. the number of knots of the spline
interpolation. The knots are nonuniformly spaced by means
of the warping law 1 — e3t" where ¢’ denotes the time axis
normalized with respect to T'/2. For this example, the system
parameters were: T = 40 us; Af = 4.5 MHz; a = 3.5;
r = 0.1. We found that in general a number of knots around
35 =40 is optimal for the design.

In Fig. 3, the PSL and the ISL of the ACF are plotted
vs. the range resolution of the designed waveform; note that
the range resolution AR (expressed in meters) is obtained by
multiplying 20 (the null-to-null mainlobe width) by ¢/2, where
c is the speed of light, i.e., AR = ¢ - 0. For this example,
the system parameters were: T = 40 us; Af = 4.5 MHz;
a = 2.5 +6.0; r = 0.1. As the range resolution degrades,
it can be noted that the ISL shows a decreasing trend. The
fluctuations around the trend can be attributed to the fact that
the optimal solution depends not only on AR (i.e., ), but also
on the setting of several other parameters, such as the number
of knots, their positions, A f and r. Therefore, by tuning such
parameters for each specific resolution a continuous decrease
is expected. In any case, based on Figs. 2 and 3, we can
observe that, as expected and already mentioned, the ISL and
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Fig. 2. PSL and ISL of the ACF vs. the number of knots of the spline
interpolation. Waveform designed with system parameters 7" = 40 us; Af =
4.5 MHz; o = 3.5; r = 0.1.

the PSL indices exhibit similar trends with respect to different
independent variables, so that minimizing the ISL corresponds
very likely to optimizing also the PSL.

-60 T T
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90 — \ \ \ \ \ \ \ \ \ \
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AR (m)
Fig. 3. PSL and ISL of the ACF vs. null-to-null range resolution AR.

Waveform designed with system parameters 7" = 40 us; Af = 4.5 MHz;
r=0.1.

In Table I, some results obtained with the proposed method
are compared with those of other techniques from the liter-
ature. More specifically, the table shows the results obtained
with: the method proposed in [7], based on simulated anneal-
ing and denoted as SA, with system parameters 7' = 40 us,
Af = 5 MHz, r = 0.1; the iterative stationary phase (ISP)
method proposed in [10], with system parameters 7" = 40 us,
Af =5 MHz, r = 0.15, and with two different values of AR
(coming from a = 4.0 and o = 4.5); the method proposed
in this paper with system parameters 7' = 40 us, Af = 4.5
MHz, r = 0.1. Range resolution is expressed both in terms of
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TABLE I
RESULTS OF PULSE COMPRESSION DESIGN FOR 1" = 40 puS.

Method  PSL (dB) ISL (dB) AR (@m) ARsgp (m)
SA -68.7 - - 65
ISP-1 -74.5 -67.3 240.0 55.5
ISP-2 -78.9 -70.4 270.0 57.8
proposed -85.7 -73.1 233.3 57.3

AR and of the -3 dB mainlobe width, denoted as ARs34p5. As
can be seen, the proposed method surpasses the other ones in
terms of any index (PSL, ISL and range resolution). The ACF
of the pulse waveform obtained with the proposed method is
depicted in Fig. 4.

In order to highlight the influence of the parameter r of the
amplitude shaping window, we plot in Fig. 5 the ACF of the
waveform designed with the same parameters as that in Fig.
4, apart from r = 0.05. A reduced rise time of the leading
and trailing edges of the pulse more accurately represents
the real situation in which the power amplifier operates in
the saturation region most of the time. As shown, halving
the rise time results in only a limited degradation of overall
performance.
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Fig. 4. ACF of the pulse designed with the proposed method and system
parameters: 7' = 40 us; Af = 4.5 MHz; a = 3.5, r = 0.1.

Analogous results for different system parameters are shown
in Table II, which reports the results obtained with: the method
proposed in [20], based on genetic algorithms and denoted as
GA, with system parameters T = 67 us; Af = 2.2 MHz; the
method proposed in [10], with system parameters 7' = 67 us,
Af = 2.2 MHz, r = 0.2, and with two different resolutions,
i.e., null-to-null mainlobe width; the proposed method with
system parameters 1T° = 67 us, Af = 2.2 MHz, » = 0.1.
The ACF of the pulse waveform obtained with the proposed
method is depicted in Fig. 6.
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Fig. 5. ACF of the pulse designed with the proposed method and system
parameters: T = 40 ps; Af = 4.5 MHz; o = 3.5, » = 0.05.

TABLE II
RESULTS OF PULSE COMPRESSION DESIGN FOR T=67 psS.

Method  PSL (dB) ISL (dB) AR (@m) ARszgp (m)
GA -59 -37 ~ 400 120
ISP-1 -72.3 -65.3 477.3 118.9
ISP-2 -80.4 -69.2 613.6 130.6
proposed -80.3 -69.2 4773 119.2

IV. CONCLUSIONS

We have developed and presented a new method to design
radar NLFM pulse waveforms exhibiting extremely low side-
lobes in their autocorrelation function. Consequently, assum-
ing that the radar receiver is matched to the transmitted pulse,
such waveforms can be effectively employed in scenarios
where a specific range resolution is required, but the use of
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Fig. 6. ACF of the pulse designed with the proposed method and system
parameters: T = 67 us; Af = 2.2 MHz; o« = 3.5, r = 0.1.
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pulse compression is unavoidable due to limited peak power
available in transmission, or there is a need of excellent
compression performances to minimize mutual interference
among targets, or both conditions occur.

Our new proposed method is based on a cubic spline model
of the pulse instantaneous frequency, whose knots are fixed
and nonuniformly spaced. The objective function is the ISL of
the matched filter output (i.e., the ISL of the pulse ACF), and
the effort is the optimization of the free parameters, which are
the values of the instantaneous frequency in the knot positions.
Due to the fixed position of the knots, the instantaneous
frequency is a linear function of the free parameters, and this
is relevant to speed up the optimization process. On the other
hand, also the non-uniformity of the knots distribution is a
key to achieve optimal solutions faster since it helps to control
better the trailing edges of the instantaneous frequency while
keeping the number of knots limited.

Obviously, the number of knots plays a crucial role in
reducing the ISL; as we have shown for a specific example,
an optimal number of knots ranges between 35 and 40,
when combined with the warping law specified in the paper.
Furthermore, it has been confirmed that minimizing the ISL
consistently leads to lower levels of PSL. The method also
offers very good flexibility in designing waveforms with
different range resolutions while keeping both the frequency
sweep and the amplitude taper factor unchanged.

We have compared the compression performance of the
proposed design method with that obtained by applying other
methods reported in the literature. The results obtained in this
study have shown that the proposed method is able to achieve
much better values of ISL and PSL, with an equal or even
better range resolution.
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