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Abstract—This paper investigates a non-parametric regression
approach based on a reproducing kernel Hilbert space frame-
work to model the relationship between Landsat-8 spectral bands
and the depth of shallow inland lakes (up to 25m). Unlike existing
parametric methods, which rely on predefined assumptions about
the relationship between the Landsat bands and the lake depth,
the proposed method considers a more flexible non-parametric
model based on a radial basis function kernel. This model
can handle multiple band ratios to estimate lake depths. The
performance of the proposed method is validated on synthetic and
real data and compared against traditional parametric models.
The results presented in this paper show that the proposed non-
parametric model is very competitive in terms of accuracy, while
eliminating the need for manual parameter selection, especially
in the context of remote sensing of turbid inland water bodies.

Index Terms—Reproducing kernels, Hilbert spaces, Lake
Bathymetry, Non-Parametric Modelling, Landsat-8

I. INTRODUCTION

Accurate and consistent monitoring of lakes and reservoirs
is essential for improving water management practices. How-
ever, such information remains scarce and infrequently shared
on a global scale [1]. Satellite data offer interesting potential in
this domain, providing an effective solution to address these
gaps. Satellite-Derived Bathymetry (SDB) maps underwater
topography using satellite imagery, offering a cost-effective
and scalable alternative to traditional in-situ methods such
as echo sounding. SDB leverages the interaction of visible
or infra-red signals with the water column and seafloor to
estimate water depth. Initially developed for coastal regions,
SDB has shown interesting properties for inland water bodies
such as lakes and reservoirs, providing global data coverage
through programs such as Landsat and Sentinel-2 [2] [3].

The principle of SDB is to estimate the water depth
from water colour using satellite imagery. Estimating the
relationship between depth and spectral reflectances requires:
(1) depth data, typically obtained through echo sounding to
calibrate and validate the models, and (2) spectral data from
spaceborne sensors such as Landsat or Sentinel. While SDB
offers substantial advantages with respect to in-situ monitor-
ing, its accuracy is influenced by several factors including
water turbidity, types of substrate, and assumptions about the
relationship between spectral band ratios and water depth. A
variety of parametric models have been developed to estimate
this relationship, such as the Lyzenga model [4] and the
Stumpf model [5] based on the logarithms of the reflectances
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in blue and green bands. Parametric models usually rely
on a simple analytical model for the relationship between
reflectance values and water depth using linear, exponential
[6], or polynomial [7] functions. However, these approaches
have inherent limitations, including their dependence on strict
assumptions about the functional form of the relationship
and the need for careful parameter tuning. Such constraints
can lead to suboptimal performance, particularly in complex
aquatic environments with high turbidity or nonlinear depth-
colour relationships [8].

This paper presents a non-parametric method adapted to
a single or multiple band ratios, which mitigates the bias
introduced by assuming a specific functional form between
water depth and band ratios. It is organised as follows.
Section II presents the parametric models commonly used in
the literature for SDB. Section III presents the non-parametric
method investigated in this paper with details about the way of
estimating its hyperparameters. Real data are then processed
in Section IV based on the case study proposed in [6].
The performance of the proposed non-parametric method is
evaluated using this dataset. Simulation results show that the
proposed method consistently improves the average root mean
square error of estimated depths across nearly all lakes, while
reducing the need for calibration.

II. BATHYMETRY ESTIMATION USING UNIVARIATE
PARAMETRIC MODELS

This section summarises univariate models that have been
considered in the literature for SDB. A univariate model
assumes that the depth of a lake at a given pixel only depends
on a single band ratio or a log-band ratio. Quantities that have
been considered in the literature for SBD are usually based
on blue/green, blue/red and green/red band or log-band ratios.
These quantities are defined as:

O Ny) = gm , (1)
g5(has Ap) = m, @)

with R(\,) the reflectance of band «. For a given pixel 4, the
input of the regression model for bathymetry is defined as:

Ty = g(Aa,ia )‘b,i)a (3)
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with g refering to either g, or gs depending on the chosen
model. A constant term 7 is classically included in the Stumpf
model (2) to ensure the positivity of the terms involved in the
ratio (typically n = 500), as suggested in [6]. The measured
water depth at pixel ¢ is modeled as:

Z; = f(f%

where ; € R7T is defined in (3), &; is an additive zero-
mean white Gaussian noise, f(x;;w) is a parametric function
modeling the relationship between water depth and reflectance
ratios and w is a vector of real parameters defining the re-
gression model. This work considers the following parametric
models studied in [6] and [7]:

w) + &, “)

filzi;w) = wo + wiz, w = [wo, w]7, o)

fo(zi;w) = wo + wim; + werd, w = [wp, wr, wa]”, (6)

fe(zi;w) = we™™, w = [wo, w1]”, @)

referred to as linear, quadratic and exponential models. For
each model, the parameter vector w can be obtained by
minimising a least square cost function defined for a sequence
of N observations as:

= arg mlnz fzs;w))?. (8)

III. A NON-PARAMETRIC BATHYMETRIC MODEL

A parametric model assumes a certain relationship (either
linear, quadratic or exponential) between the noiseless band
or log-band ratio x; and the water depth z;. However, this
assumed relationship may not always be correct and the
actual relationship can deviate significantly from an assumed
standard form. As an example, Fig. 4 shows that the spectro-
bathymetric relationship is relatively flat over shallow depths
and increases sharply beyond a certain point, which is difficult
to describe with a parametric model. Therefore, this paper
proposes to investigate a non-parametric model for SDB.
Non-parametric models have received a considerable atten-
tion in the literature since they are capable of approaching
many non-linear and locally smooth relationships between
several variables [9]. This section describes the proposed non-
parametric regression based on Reproducing Kernel Hilbert
Spaces (RKHS).

A. RKHS concept

A kernel k£ models the similarity between two inputs z;
and z; belonging to a space denoted as A" using the quantity
kij = k(z;, ;). This kernel is called a Mercer kernel if its
Gram matrix K with elements k;; is symmetric (KT = K)
and positive-definite, i.e.,

cT'Ke > 0, VeceAX.

The core idea of kernel methods is that a Mercer kernel can be
interpreted as an inner product in a higher-dimensional space,

specifically a Hilbert space. According to Mercer’s theorem,
there exists a mapping ¢ such that:

k(wi, x5) = (¢(x:), p(x5))-
This implies that the inputs x; and x; can be implicitly
projected into a higher-dimensional space as ¢(x;) and ¢(z;),
and their similarity can be computed in this space using the
kernel k, without explicitly calculating ¢. This concept is
known as the kernel trick. As noted in [10], problems that
are difficult to solve in lower dimensions often become more
manageable in higher dimensions, while the risk of overfitting
is minimised. The function f in (4) is expressed as a linear
combination of kernel functions associated with N training

variables x;:
N
w) =Y wik(x;, ), ©)
i=1

where k is the reproducing kernel. An RKHS is a specific
Hilbert space containing the function f defined in (9). The
kernel k£ quantifies the similarities between the training point
z; and x so that points that are closer to each other have
a stronger influence on the total result. The weights w; in
(9) determine the contribution of each kernel to the function
f. The representation of f in this form is guaranteed by the
representer theorem, which ensures that the minimiser of a
regularised loss function in an RKHS lies in the span of these
kernel functions [11]. In particular, a great attention has been
devoted to the Gaussian (or radial basis) kernel defined as:

k(z;,x) = exp [f’y(xi — x)z} , (10)
where the bandwidth parameter v controls the smoothness of
the function f. A small value of  increases the range of
influence for each training point resulting in a smoother and
less responsive function f. It is conventional to add a regulari-

sation term to estimate the weight vector w = (wy, ..., wx )T
leading to:

bl

—argmlnz flziw)]? +allw|® (11)
This type of regularlsatlon is known as Tikhonov regularisation
[12], where the regularisation parameter « balances data

fidelity and smoothness regularisation.

B. Univariate regression

Consider N pairs of training data (z1,21),...,(ZN,2N),
where z; is a feature computed from satellite reflectances
using (3) and z; is the depth of pixel . The N x N Gram
matrix K is formed using the elements k(z;, z;) in (10) with a
fixed parameter v whose selection is detailed in Section III-D.
The weight vector w can be estimated as the solution of the
regularised system (11):

W= (K"K + aly) " K"z, (12)

where z = [z1,...,2n5]7, Iy is the N x N identity matrix,
and « is the regularisation parameter. Once the weights have
been calculated, a prediction of any new water depth can be
determined using a pixel band ratio and (9).
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C. Multivariate regression

The regression model introduced in Section III-B can be
easily generalised to handle multiple bands or log-band ratios
simultaneously. Indeed, the kernel k£ defined in (10) can be
modified as follows:

k(zi, ;) = exp (=@ — x;|?), (13)

where x; is a vector of band or log-band ratios, e.g.,

T; = [Q(Ab,ivAg,i)ag()\b,iy)\r,i)vg(/\g,h)\r,i)]Ta

where r,g,b are used for the red, green and blue bands,
respectively.

D. Estimation of parameters v and o

This section first explains how to estimate the bandwidth
parameter v of (10) in order to avoid underfitting (small values
of ) and overfitting (large values of ). The cross validation
method defined in [13] for choosing the correct value of
consists in minimising the average squared prediction error
for leave-one-out predictors. For IV training data pairs, the
optimal bandwidth parameter is given by:

N
5 1 Fi (e ap)]2
v = argmwln N ‘_E 1[2i - f’y(xi7w)] )

(14)

where f; is the estimator of the function f, built with all
the learning dataset except the pair (z;,z;) that is left out
(Leave-One-Out (LOO) method). Note that a weight 6(x;) =
Uzy41,2n_,) €an be introduced in (14), with [ > 2 an integer
and 1[;,,, +,_, the indicator on the interval [x;y1, 2N
(after sorting the input values z; in ascending order) to
mitigate boundary effects [14].

The parameter o determines the importance given to
Tikhonov’s regularisation. If « is too small, minimising (11)
reverts to the original ill-posed problem and therefore to an
instable problem. Conversely, if « is too large, the optimisation
primarily minimises ||w||?, disregarding the data altogether. A
trade-off must thus be found between the regularisation terms
||w]|? and the residue S, [z — f(z4; w)]? . Such an optimal
balance is often identified using the so called L-Curve [15],
which plots the residue versus ||w||? for different values of
a. The optimal value of « corresponds to the inflection point
of the L-Curve, i.e., the point where the second derivative
changes its sign.

A common approach for selecting both a and v is a
complete grid search, which systematically explores a prede-
fined set of values for each parameter. This method consists
of evaluating all possible combinations of o and  over a
discrete grid and selecting the pair that minimises the cross-
validation error. This approach is exhaustive and guarantees
that the best combination within the predefined grid is found,
which explains that it was used in this work. Note however
that alternative techniques, such as the Stein’s Unbiased Risk
Estimate (SURE), could be explored to determine (c,y) with
a reduced computational complexity [16].

IV. EXPERIMENTS
A. Synthetic Data

The proposed non-parametric model is first evaluated using
synthetic data and compared to the parametric models. The
blue and green bands from one of the 17 lakes of [6] are first
used to create 3 bathymetric maps using the linear, quadratic
and exponential Stumpf models defined in (5), (6) and (7).
The parameters of each model are chosen so that the resulting
depth covers the same range of depths as the original lake
(from 1 to 6 meters). The resulting data is sub-sampled such
that each interval of depth (from 1 to 2 meters, from 2 to
3 meters, ..) are equally represented. An additive zero-mean
Gaussian noise is then introduced with a variance depending
on the depth d, precisely 02 = a x d, an ascending linear
function of the water depth. The value of a is set to 0.05, a
value visually corresponding to the amount of noise that could
be expected in practice.

The generated maps are reconstructed with all the above
models including the proposed non-parametric RKHS model
(9). These reconstructions are compared to the ground truth,
which is available for this synthetic dataset, as shown in Fig.
4. The models are also compared quantitatively via the Root
Mean Square Error (RMSE), as shown in Table 1. Each set
of synthetic data is divided into two equal parts, one used to
train the model, the other one used for RMSE computation.
In each case, the model that performs the best is the one that
was used to create the dataset. However, it can be seen that the
proposed non-parametric model performs as well as the best
model in all cases. Fig. 1 confirms that the non-parametric
model fits the synthetic data better than any other model (the
model used to generate the data is not shown for clarity, as it
overlaps with the non-parametric model), in agreement with
the results in Table L.

7 true depth
6 A linear model
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true depth
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(a) Exponential data. (b) Quadratic data.
Fig. 1: Depth estimation for synthetic exponential and

quadratic datasets.

Models
Data Linear  Quadratic =~ Exponential ~RKHS
Linear 0.211 0.211 0.336 0.211
Quadratic 0.302 0.195 0.243 0.195
Exponential ~ 0.379 0.196 0.187 0.187

TABLE I: RMSEs (in meters) of 3 datasets reconstructed with
4 models.
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B. Real data

1) Study area

This section considers the in-situ dataset provided by [6],
collected across 17 Arctic lakes during a field expedition from
July 22 to 27, 2017, using a sonar unit attached to a float
plane. The input data are Landsat-8 TOA reflectances from
the blue (band 2, 452-512 nm), green (band 3, 533-590 nm),
and red (band 4, 636-673 nm) bands, the same observation
(LCO8_L1TP_077011_ 20160805_ 20170222_01_TI) used in
[6]. It is worth noting that Landsat Collection 1 data and
products are no longer available for download from the USGS
as of December 30, 2022 (https://www.usgs.gov/landsat-
missions/landsat-collection-1). Thus the dataset considered in
this paper is slightly different from [6]. In order to match the
original paper, the dataset consists of L1 data, used without
any atmospheric correction, which should be considered for a
multi-temporal bathymetric analysis.

2) Training

7 lakes (identified using their IDs provided in Tables II and
IIT) were extracted from the real dataset of [6] to compare the
different bathymetric models. The corresponding Landsat-8
images were downloaded from the USGS Explorer. The depth
of each pixel was set to the mean of the measured depths
located inside the region covered by this pixel, according
to the in-situ data provided by [6]. A set of 12 models
was created to model the relationship between the satellite
image and the lake depth (blue/green, blue/red and red/green
band ratios, linear and exponential models, band and log-
band ratios, see Section II). Models are indicated in Table
IT with their type, ratio type and colour bands (e.g., lis(g,r)
is used for the linear model using the Stumpf ratio of the
green and red bands). For each lake, the best parametric model
used in [6] was chosen for a more meaningful comparison.
Two non-parametric models were then tested, after estimating
the bandwidth and regularisation parameters as explained in
Section III-D. The first model was built using the band ratio
defining the parametric model whereas the second model uses
a multiband ratio, as presented in Section III-C.

3) Calibrating v and o

Parameters v and a were computed as described in Section
II-D. Fig. 2 shows the LOO RMSE corresponding to (14)
for different values of v, which highlights the importance
of the bandwidth parameter selection. The U-shaped curve
indicates that very small values of ~ lead to underfitting, while
excessively large values result in overfitting. The optimal value
of v minimises the RMSE, striking a balance between these
two effects. If this parameter is suboptimal, results could end
up being outperformed by the parametric model, shown in
red in Fig. 2. Similarly, Figure 3 displays the L-curve, which
is typically used to adjust the regularisation parameter o, as
explained in Section III-D. This figure shows the variation of
the regularisation term ||w|| as a function of the residual norm
|lz — Kw|| for different values of «. It illustrates the trade-
off between regularisation, which smooths the function, and
fidelity to the data. Note that parameters v and « have been

adjusted for each lake, as reflectance values vary significantly
across spectral bands.

—— Non-Parametric Loo
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= = Parametric LOO
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Fig. 2: RMSE of parametric and non-parametric models as a
function of the bandwidth parameter ~.
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Fig. 3: L-Curve for the determination of parameter o.

4) Testing

Training was conducted using 50% of the data whereas the
remaining 50% was used for testing. The construction of
the training and testing databases was done to ensure that
the maximum and minimum depths belong to the training
dataset, whereas the second maximum and minimum depths
was systematically attributed to the test group. A total of 200
different Monte-Carlo (MC) runs was considered. The average
RMSEs computed using these MC runs are reported in Table
II. A LOO cross validation (CV) was also performed, which
means that for each lake, all the data but one were selected to
fit the models, the non-selected vector was used for testing and
the results were averaged computing the RMSEs and standard
deviations provided in Tables II and III. Table III compares

Lakes RMSE (meters)

1D Dmax Model [6] Split LOO

2964 11.7 lis(b, g) 1.97 205 1.61+£1.1
3442 1.8 exr(g,7) 027 030 0.18+0.2
3839 5.1 exr(b,r) 0.60 0.60 0.38+0.5
4199 8.2 exr(b,g) 213 280 2.31+1.6
4222 8.9 exr(b,r) 231 201 1.74+1.1
4782 2.2 exs(g,r) 013 015 0.13£0.1
5326 4.4 exr(b,r) 043 052 0.254+0.2

TABLE II: Performance of different parametric models for
depth estimation. RMSEs of depth estimates using 50% of the
data (Split) and LOO methods.

the RMSEs obtained for the best parametric model and the
proposed non-parametric models (univariate and multivariate
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Lakes RMSE (meters)
. RKHS RKHS
D Drmax  Parametric One band Multiband
2964 11.7 1.61+1.1 1.38 +0.8 1.254+0.8
3442 1.8 0.184+0.2 0.18%£0.3 0.20+0.3
3839 5.1 0.38+0.5 0.31£05 0.35+0.6
4199 8.2 231+1.6 1.014+1.5 1.254+1.5
4222 8.9 1.74+1.1 1.71£1.0 1.514+1.2
4782 2.2 0.13+0.1 0.11 +£0.1 0.11 £ 0.1
5326 44 0.254+0.2 0.20£0.3 0.19+0.3

TABLE III: RMSE of depth estimates for parametric and
non-parametric regression models (hyperparameters estimated
using LOO CV).

regressions) using an LOO CV. These results show the interest
of using a non-parametric model, and confirm the results of
Section IV-A. Examples of water depth fits obtained using the
univariate non-parametric regression are displayed in Fig. 4
for two lakes. The left figure shows that the non-parametric
model is the only model in close agreement with the data.
The right figure shows that the non-parametric model is able
to approximate the exponential shape between the blue/green
band ratios and the water depths.

1, @ training data e 6] @ training data . -:
= exponential model = exponential model L]
L]

= 10 = Non-Parametric model =* — | — Non-Parametric model
£ K~ £s
E= F=
E=I] E=)
Q. Q4
(0] (]
© 6 ©
= =
L L3
© 4 ©
= =

2 2

140 145 1.50 1.55 1.60 1.65 170 25 2.6 2.7 28 29
Blue / Green band ratio Blue / Red band ratio

(a) Lake 4199. (b) Lake 3839.

Fig. 4: Examples of functional relationships between band
ratios and water depths.

V. CONCLUSION

This paper investigated a non-parametric model based on
kernel methods as an alternative to traditional models for
describing the relationship between water depth and the
reflectance of different spectral bands of satellite data. A
linear combination of kernels appears well-suited for accu-
rately capturing the nonlinear relationship between band/log-
band ratios and water depth. The key advantage of non-
parametric approaches lies in their flexibility, as they do not
impose a predefined functional form for this relationship. This
eliminates the need to test multiple functional models and
manually select the most effective model for a given lake.
While the introduction of a multivariate model does not lead
to a significant reduction in RMSEs, it offers the practical
benefit of avoiding the selection of the best-performing band
ratio for specific conditions.

Different spectral bands provide complementary informa-
tion about water depth. The blue band is commonly used due

to its higher reflectance and lower absorption by water, but
it is highly sensitive to atmospheric aerosols. In contrast, red
light penetrates only a few meters into the water, making it
more relevant for lower depths and turbid waters. Finally, the
green band is more effective in clear waters. Leveraging all
available spectral information through the proposed multivari-
ate non-parametric model appears to be a robust approach for
bathymetry, ensuring greater adaptability across varying water
conditions.

It is worth noting that the proposed model can be adapted
to specific application needs. For instance, a constraint could
be introduced to enforce the bijectivity of the function f. Ad-
ditionally, a spatial regularisation term could be incorporated
into the cost function to encourage smoothness in the estimated
depth map. Since band ratios vary significantly between lakes,
a separate model was developed for each site. Future research
should focus on creating a regional model to mitigate the
risk of overfitting while also accounting for time-dependent
reflectance variations. Achieving this goal will require inte-
grating additional factors such as atmospheric correction and
sunglint removal to improve the proposed bathymetric model.

REFERENCES

[1]1 S.Zhang, H. Gao, and B. S. Naz, “Monitoring reservoir storage in South
Asia from multisatellite remote sensing,” Water Resources Research,
vol. 50, pp. 8927-8943, Oct. 2014.

[2] A. Arsen, J. F. Cretaux, M. Berge-Nguyen, and R. A. D. Rio, “Remote
Sensing-Derived Bathymetry of Lake Poopd,” Remote Sensing, vol. 6,
pp. 407-420, Dec. 2013.

[3] A. Getirana, H. C. Jung, and K. Tseng, “Deriving three dimensional
reservoir bathymetry from multi-satellite datasets,” Remote Sensing of
the Environment, vol. 217, pp. 366-374, Nov. 2018.

[4] D. R. Lyzenga, “Passive remote sensing techniques for mapping water
depth and bottom features,”

[5] R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of Water
Depth with High-Resolution Satellite Imagery over Variable Bottom
Types,” Limnol. Oceanogr., vol. 48, pp. 547-556, Jan. 2003.

[6] C. E. Simpson, C. D. Arp, Y. Sheng, M. L. Carroll, B. M. Jones,
and L. C. Smith, “Landsat-derived bathymetry of lakes on the Arctic
Coastal Plain of northern Alaska,” Earth System Science Data, vol. 13,
p. 1135-1150, Mar. 2021.

[71 F. Eugenio and J. Marcello and A. Mederos-Barrera and F. Marqués,
“High-Resolution Satellite Bathymetry Mapping: Regression and Ma-
chine Learning-Based Approaches,” IEEE Trans. Geosci. Remote Sens-
ing, vol. 60, pp. 1-14, Dec. 2021.

[8] C. Wei, Y. Xiao, D. Fu, and T. Zhou, “Impact of Turbidity on Satellite-
Derived Bathymetry: Comparative Analysis Across Seven Ports in the
South China Sea,” Remote Sensing, vol. 16, p. 4349, Nov. 2024.

[9] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning. New York: Springer, 2009.

V. N. Vapnik, The Nature of Statistical Learning Theory. New York:

Springer, 1995.

B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Massachusetts:

MIT Press, 2001.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems.

Washington, D.C.: Vh Winston, 1977.

J. D. Hart and S. Yi, “One-Sided Cross-Validation,” Journal of the

American Statistical Association, vol. 93, pp. 620-631, Jun. 1998.

A. Schindler, Bandwidth Selection in Nonparametric Kernel Estimation.

PhD thesis, University of Gottingen, Germany, Sep. 2011.

D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regulariza-

tion and the L-curve for large discrete ill-posed problems,” Journal of

Computational and Applied Mathematics, vol. 123, pp. 423-446, Nov.

2000.

C. M. Stein, “Estimation of the Mean of a Multivariate Normal Distri-

bution,” The Annals of Statistics, vol. 9, pp. 1135 — 1151, Nov. 1981.

[10]

(11]

[12]
[13]
[14]

[15]

[16]

2181



