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Abstract—Multi-modal satellite data fusion is a key challenge
in remote sensing, requiring the integration of data with differing
spatial and temporal resolutions. Fusion methods must enhance
image resolution while preserving the physical integrity of the
underlying phenomena. Traditional fusion techniques, such as
interpolation and statistical downscaling, often disrupt spatial
consistency and introduce artifacts that distort physical repre-
sentations. Graph-based methods offer a robust alternative by
modeling diverse data sources into node-based signals and edge
connections based on ancillary data. This work proposes a novel
Graph Convolutional Network (GCN) framework for satellite
image fusion, leveraging ancillary variables such as terrain ele-
vation and vegetation indices to enhance spatially consistent data
integration. A key advantage of this GCN approach is its ability to
learn transferable edge relationships, enabling adaptation to new
regions using ancillary data without retraining. Experimental
results demonstrate that our GCN framework effectively captures
spatial dependencies within the graph embedding while merging
heterogeneous data sources, leading to improved image resolution
and enhanced feature representation.

Index Terms—Data Fusion, Graph Signal Processing (GSP),
Graph Convolutional Networks (GCNs), Remote Sensing

I. INTRODUCTION

The advancement of Earth observation technolo-
gies—including radiometers, synthetic aperture radars
(SAR), and optical sensors—has provided unprecedented
amounts of data for remote sensing. However, differences in
spatial and temporal resolutions, sensor limitations, and data
gaps present significant challenges to generating high-quality
remote sensing products [1]. Addressing these issues requires
data fusion techniques to improve the accuracy and resolution
of satellite-derived variables, such as soil moisture (SM).
These fusion techniques fall into two main categories:
image-only, e.g., super-resolution and pan-sharpening, and
multimodal approaches that integrate ancillary data, such as
elevation or vegetation indices. This work focuses on the
latter category, where additional sources of information are
leveraged to improve estimation quality.

Image-only fusion methods often struggle with spatial
consistency because they combine pixel values from differ-
ent imaging sources, making them prone to missing critical
terrain changes that could be obtained from other sources
of information. This limitation can introduce artifacts that
distort the representation of underlying physical processes [6].
For instance, pan-sharpening, extensively explored in remote
sensing, enhances spatial resolution by merging low-resolution
multispectral images with high-resolution auxiliary images,

typically a panchromatic (PAN) band [7]. The most commonly
used pan-sharpening algorithms, principal component analysis
(PCA) and the Brovey transformation [8], have been applied to
a wide range of image datasets. However, these methods can
compromise spectral fidelity or result in the loss of valuable
information from low-resolution data, as they do not account
for the diverse land cover compositions represented in the
images [9].

Machine learning (ML) methods can incorporate ancillary
data, efficiently handle large datasets, and model complex non-
linear relationships [10]. ML-based downscaling techniques,
for example, enhance spatial resolution by integrating ancillary
variables such as vegetation indices and meteorological condi-
tions. However, these approaches often rely on region-specific
training data, limiting their ability to generalize across diverse
landscapes [3], [11]. Deep learning-based super-resolution
improves resolution by learning spatial patterns from low-
resolution inputs but may produce blurred outputs, especially
in areas with complex textures or sharp transitions [12].
This limitation often arises from the network’s tendency to
prioritize global structure over fine-grained variations, leading
to oversmoothing. Furthermore, deep learning-based fusion
techniques require large training datasets, which may not be
readily available in remote sensing applications [4], [13].

Graph-based models [14], which can also incorporate an-
cillary data, are particularly well-suited for processing remote
sensed signals that can exhibit irregularities [15], including
(i) spatial irregularity, occurring when measurements, such
as those from in-situ sensors or drones, are not acquired on
a uniform grid, and (ii) contextual irregularity, which arises
from prior knowledge or ancillary data that influence the
relationships between samples. In this paper, we focus on this
latter type of irregularity, arising from prior information, such
as physical constraints or domain-specific correlations, that can
introduce varying levels of dependence between observations.
Path-wise graphs [16], have been used to enhance images
by analyzing structural differences instead of pixel values.
Similarly, superpixel-wise graphs [17] employ a sparsely
constrained adaptive structure for a regression that improves
change detection by leveraging structural consistencies. While
these methods focus on capturing spatial relationships within
images using graphs, they primarily rely on self-similarity and
structure consistency without explicitly incorporating auxiliary
information. To incorporate terrain data, the approach intro-
duced in [18], [19] constructed a graph where node signals
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TABLE I
COMPARISON OF DATA FUSION METHODS THAT CAN INCORPORATE AUXILIARY DATA. INDICATES HIGH-COMPLEXITY APPROACHES WITH EXTENSIVE

DATA REQUIREMENTS AND CHALLENGING IMPLEMENTATION. REPRESENTS METHODS WITH MODERATE COMPLEXITY, BALANCING PERFORMANCE
AND FEASIBILITY. HIGHLIGHTS TECHNIQUES KNOWN FOR THEIR ADAPTABILITY ACROSS DIVERSE DATASETS AND CONDITIONS.

Study - Method Model Complexity Training Data
Dependency

Transferability
Across Regions Limitations

Yu el al. (2021) - Random
Forest [2]

No need for data normalization.
Rule-based approach.

Requires training per
categorized soil texture group. Region-specific models needed. Long training time, sensitive to

imbalanced data.

Dorigo et al. (2021) - ANN
[3]

Detects non-linear
relationships. Complex structure.

Requires labeled datasets for
supervised learning.

Retraining needed for different
landscapes.

High computational demand,
prone to overfitting.

Xu et al. (2021) - CNN [4] Specialized architecture with
multiple layers for spatial data.

Large training sample
requirement.

Requires domain-specific
fine-tuning.

High data demand,
computationally expensive.

Llamas et al. (2022) - KNN
[5]

Simple, distance-based
classification.

Training requires dense
sampling points for accuracy.

Region-specific models are
required.

Fails with missing data, poor
generalization in sparse datasets.

Graph-Based Processing
Requires graph structure

knowledge and relationships
among nodes and edges.

Does not need region-specific
training data.

Adaptable to diverse regions
without retraining.

Requires graph construction
and edge definition.

represent the image, and edge connections encode terrain
characteristics, enhancing resolution from multimodal data.

While both graph-based and ML methods can incorporate
multimodal data, however, as illustrated in Table I, ML ap-
proaches [2]–[5] often require larger training datasets. Graph
methods explicitly define dependencies through structural con-
nections, allowing for more explicit modeling of spatial and
contextual relationships. However, they usually rely on simple
predefined formulas for edge weights [18], [19], limiting
their ability to capture complex interactions. In contrast, our
proposed method uses limited amounts of training data to learn
functions that map differences ancillary data to edge weights,
enabling a more adaptive and data-driven representation.

In this paper, we propose a graph convolutional network
(GCN) approach that learns feature relationships to determine
edge strengths rather than directly integrating geophysical
data into the graph construction, as in [18]. This method
enhances signal representation at the nodes while dynamically
learning how auxiliary variables—such as terrain features, land
cover, and other physical attributes—affect edge strength by
capturing non-linear dependencies within both signal and edge
weight domains. As a key advantage, this framework can train
the embedded relationships of edges in one region and apply
them to another for which ancillary datasets are available. This
results in improved adaptability across geographically diverse
areas without requiring region-specific model retraining.

The paper is structured as follows. Section II introduces the
graph-based data fusion approach, followed by the methodol-
ogy for incorporating GCNs. A case study on soil moisture
enhancement is presented in Section III, with conclusions
provided in Section IV.

II. PROPOSED METHODOLOGY

Remote sensing images can be modeled as graph signals on
a graph, where each node corresponds to a sensed measure-
ment. In previous work, horizontal and vertical edges connect
neighboring nodes with non-negative weights wij , determined
by the similarity of terrain characteristics at their respective
locations [20]. In our proposed approach, we enhance this
framework by employing GCNs to dynamically learn and
refine edge weights. GCNs leverage relationships discovered

within the auxiliary variables to adjust edge connections adap-
tively, without requiring predefined terrain-based similarities.

A. Graph Construction

Let Y ∈ Rn×n denote the low-resolution SM and A ∈
RN×N×d the ancillary variables, where d is the number of
available variables. Y and A are used for estimating the
target high-resolution SM X ∈ RN×N . We extract sets
of K local co-registered patches Y =

{
Yk ∈ Rp×p

}K

k=1
,

A =
{
Ak ∈ RP×P×d

}K

k=1
and X =

{
Xk ∈ RP×P

}K

k=1
.

Graph Definition. For each patch in Y and A, we de-
fine an undirected weighted graph, with k-th patch graphs
denoted as Gy

(
Vy,y

k,Wk
y

)
and Ga

(
Va,A

k
vec,W

k
a

)
, where

the nodes Vy =
{
1, 2, . . . , p2

}
and Va =

{
1, 2, . . . , P 2

}
correspond to the pixels in each patch. The information from
Yk and Ak is vectorized as yk = vec

(
Yk

)
∈ Rp2

and
Ak

vec = vec
(
Ak

)
∈ RP 2×d, representing the graph signals

yk : Vy → R and Ak
vec : Va → Rd such that the signal value

at each node equals the corresponding pixel intensity or the
pixel intensities along the d ancillary variables. The symmetric
matrices Wk

y ∈ Rp2×p2

and Wk
a ∈ RP 2×P 2

represent the
edge weights of the graphs Gy and Ga, respectively. The values
Wk

y(i, j) and Wk
a(i, j) quantify the similarity between pixels

i and j, encoding the local structural relationships. Finally,
we construct the fused graph Gf

(
Vf ,F

k
vec,W

k
f

)
, where the

signal Fk
vec ∈ RP 2×Z across the nodes Vf =

{
1, 2, . . . , P 2

}
is

obtained by concatenating the features of both input sources.

Fk
vec = Fk

y ⊕ Fk
a : V → RZ , (1)

where Fk
y ∈ RP 2×Z/2 in the upper arm and Fk

a ∈ RP 2×Z/2 in
the lower arm of Fig. 1 are graph-based deep features extracted
by GCNs from the graphs Gy and Ga, respectively.
Definition of weights. The weight matrices are initialized
based on the distance between pixels within the graph signals,
such that W̄k

y(i, j) = 1 − |yk(i) − yk(j)|, W̄k
a(i, j) =

1− 1

d
∥Ak

vec(i)−Ak
vec(j)∥1 and W̄k

f (i, j) = 1− 1

Z
∥Fk

vec(i)−
Fk

vec(j)∥1. Then, we introduce a learnable function RΘ :

RM×M → {0, 1}
M(M−1)

2 parameterized by Θ to control
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Fig. 1. High-resolution SM is reconstructed from a fused graph representation that integrates multi-source data. Independent graph representations are
computed for low-resolution SM (36 km) and high-resolution variables (9 km) such as VWC, VOD, and LST, then expanded into latent representations via
GCNs that leverage graph connectivity. These latent representations—comprising the high-resolution variable features and the upsampled low-resolution SM
features—are concatenated, and a subsequent GCN learns their connectivity to reconstruct the high-resolution SM.

weight sparsity. This function takes a weight matrix of M
nodes (where M = p2 or M = P 2, depending on the signal
resolution) and outputs a binary mask that determines whether
each weight should be retained (1) or removed (0). To obtain
the binary mask, we first compute a feature matrix U, where
each element U(i, j) represents a learned feature for the edge
between nodes i and j. The feature matrix is computed as
U = CΘ

(
vec△

(
W̄

)
, {(i, j)}

M(M−1)
2

)
where CΘ is a 1D

convolutional layer with positional encoding. This function
learns position-aware features for the M(M−1)

2 node pairs
corresponding to the upper triangular part vec△

(
W̄

)
. The final

weight matrix W̄ ∈ RM×M is obtained as

W(i, j) = W̄(i, j) · RΘ

(
W̄

)
(i, j), (2)

where RΘ

(
W̄

)
(i, j) = sign (U(i, j)) corresponds to the

values of the binary mask. (2) ensures that only selected
weights remain in the final graph representation while others
are pruned based on learned features. The weights are esti-
mated for i < j as the undirected topology is fully determined
by its upper triangular part. Following the general formulation
in (2), we learn the weights as Wk

y(i, j) = W̄k
y(i, j) ·

RΘy

(
W̄k

y

)
(i, j), Wk

a(i, j) = W̄k
a(i, j) · RΘa

(
W̄k

a

)
(i, j)

and Wk
f (i, j) = W̄k

f (i, j) · RΘf

(
W̄k

f

)
(i, j) with trainable

parameters Θy , Θa and Θf for the graphs of low-resolution
SM, ancillary variables and fused, respectively.

B. Graph Convolution Network Architecture

We propose a supervised network for high-resolution re-
construction, leveraging graph-based local relationships to
fuse multiple sources yk and Ak

vec. The fusion occurs in
the space of their features, with Fk

y = S PΩy (Gy) and
Fk

a = PΩa (Ga) corresponding to the upper and lower arms
of the network in Fig. 1 where S ∈ RP 2×p2

= softmax
(
S̄
)

is a softmax-normalized upsampling matrix, initialized from
a random matrix S̄ ∼ N (0, 1)

P 2×p2

, ensuring a smooth and
probabilistic mapping of low-dimensional features to a high-
dimensional space. The GCNs PΩy

and PΩa
follow a two-

layer architecture [21], effectively leveraging structural advan-

tages of graphs to capture local relationships and dependencies
between connected nodes for an enhanced representation. The
concatenated features Fk

y ⊕ Fk
a form the signal on the fused

graph Gf , which is then passed through the GCN PΩf
to

estimate the target high-resolution SM as:

x̂k = PΩf

(
Gf

(
Vf ,F

k
y ⊕ Fk

a,W
k
f

))
, (3)

where the network output X̂k = mat
(
x̂k

)
is the matrix

form of x̂k representing the high-resolution SM estimate for
the k-th patch. The optimization minimizes (i) the distance
between the target xk and estimate x̂k (quality term), (ii)
the distance between the target xk and a rough upsampling
S yk, regularizing S acts as a consistent upsampling operator,
as it is used to upsample low-resolution features and, (iii)
the error between distance-based target weights W̄k

x(i, j) =
1−|xk(i)−xk(j)| and W̄k

f (i, j), enforcing alignment of fuse
graph weights with target weights, shown beneficial for GCN-
based reconstruction. The optimization problem is:

Θ∗,Ω∗,S∗ = argmin
Θ,Ω,S

1

2

∑
k

∥xk − x̂k∥22 + ∥xk − Syk∥22

+ ∥vec∆(W̄k
x)− vec∆(W̄k

f )∥22. (4)

where Θ = {Θy,Θa,Θf} is the set of trainable parameters
for the graph weights, Ω = {Ωy,Ωa,Ωf} denote the GCN
learnable kernel and S is the learnable upsampling matrix, all
these represent the trainable parameters of our network.

III. CASE STUDY

As a case study for our data fusion method, we focus on
the Soil Moisture Active Passive (SMAP) mission. SMAP
used an L-band radiometer (36 km resolution) and an L-band
radar (3 km resolution) for soil moisture (SM) estimation [22],
[23]. After the radar’s failure, SMAP relied solely on coarse
radiometer-derived brightness temperatures (Tb), limiting spa-
tial resolution. This highlights the need for advanced fusion
techniques to reconstruct high-resolution soil moisture (SM)
maps from coarse-resolution radiometric observations, using
auxiliary terrain information. We evaluated our GCN-based
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Fig. 2. Setups for spatial (a) and temporal (b) shot reconstructions: (a) Missing
spatial regions (red) are reconstructed using a model trained on the remaining
data. (b) Data from odd-numbered months (black) is reconstructed using a
model trained on even-numbered months.

approach using SMAP mission data in the continental United
States.

A. Experimental Setup

We used two spatial resolutions: 36 km (coarse) and 9 km
(fine). Soil moisture is the target signal, while the ancillary
variables—vegetation optical depth, land surface temperature,
and vegetation water content—were available at 9 km. These
ancillary variables were used to enhance the signal on the
nodes. The interpolation performance was assessed by com-
paring estimates with the closest ground-based observations.

B. Ablation Studies

We conduct two ablation studies to assess the generalizabil-
ity of our network. Inference is tested when training data lacks
local spatial regions at all time instants, Fig. 2(a), and when
the entire terrain is missing from training for specific months
(temporal shot), Fig. 2(b).
Spatial Reconstruction: Spatially delimited regions known
as 1) Tonzi Ranch, 2) South Fork and 3) LittleRiver as
enumerated in Fig. 2(a) are removed from the training dataset
throughout all months, ensuring that the network does not
know any spatial details of these local regions.Fig. 3 confirms
the ability of our graph representation and network, with con-
sistent estimations across regions and months, demonstrating
reliable reconstruction in unseen regions.
Temporal Shot Reconstruction: Temporal shots are removed
from training as shown in Fig. 2(b), ensuring the network
has no prior knowledge of any spatial details of specific
months while retaining information from contiguous ones.
This study evaluates the capability of the network to generalize
to missing months given prior knowledge of the same region
at different times. Visual and PSNR results in Fig. 4 confirm
the effectiveness of our graph representation in reconstructing
missing temporal shots.

C. Discussion

The results summarized in Table II demonstrate the effec-
tiveness of our proposed method in estimating soil moisture

Fig. 3. Spatial reconstruction: 9 km SM inference for Tonzi Ranch, South
Fork, and Little River, excluded during training. Each row shows estimations
alongside corresponding real data, organized by month (bottom of each panel).

Fig. 4. Temporal shot reconstruction: 9 km SM estimations (left) for some
missing odd-numbered months (rows) closely match the target SM (right).
PSNR results validate reconstruction quality despite the model lacking 9 km
SM data for those months. A zoomed-in view of the last row highlights the
local consistency of our method in recovering fine details, which are missing
from image-only approaches like Kriging but can be extracted from ancillary
variables such as VOD.

(SM) from enhanced satellite images, validated against in situ
measurements. Correlation and error performance metrics in-
dicate that the proposed GCN model not only maintains spatial
consistency in the reconstructed images, but also achieves high
accuracy, producing estimates that align with ground-based
observations. Furthermore, a comparison with nearest neigh-
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Fig. 5. 9 km SM estimations from (a) image-only Kriging, (b) a KNN-based
approach using ancillary variables, and (c) our proposed method. Visual results
indicate that our approach more closely resembles the target shown in (d).

bor, kriging (a statistical interpolation technique that estimates
values using neighboring data points), and other graph-based
methods highlights the superior performance of our approach,
demonstrating improved estimation accuracy. Visualizations
in Fig. 5 also demonstrate enhanced visual quality compared
to methods that rely solely on image data, such as Kriging,
and those that incorporate ancillary variables, such as the
KNN-inspired method. The spatial reconstruction study, where
regions such as Tonzi Ranch, South Fork, and Little River were
entirely omitted from the training dataset, shows that the pre-
trained model successfully generalizes to previously unseen
terrain regions. This confirms that our approach does not rely
on predefined feature-to-feature relationships but rather on a
more robust representation of the feature space within the
network’s learned embedding.

TABLE II
COMPARISON RESULTS FOR DIFFERENT METHODS ESTIMATING IN-SITU

MEASUREMENTS, THE ERRORS ARE ESTIMATED IN TERM OF THE
STATE-OF-THE-ART METRICS.

Nearest-Neighbor Kriging Graph-Based [19] Ours
MAE ↓ 0.090 0.085 0.0729 0.062

RMSE ↓ 0.110 0.094 0.083 0.074
ubRMSE ↓ 0.090 0.088 - 0.061

bias ↓ 0.087 0.084 - 0.033
R ↑ 0.749 0.703 - 0.803

IV. CONCLUSION AND FUTURE WORK

A key advantage of our approach is its ability to train
on regions with specific terrain characteristics and generalize
to new areas. This ensures that the learned representations
remain applicable across different geographic regions, pro-
vided ancillary datasets are available. Such adaptability is
particularly valuable in remote sensing, where terrain and
environmental conditions vary widely. The proposed GCN
framework provides a flexible and adaptive approach for
modeling feature relationships, effectively capturing nonlinear
dependencies while maintaining spatial consistency in recon-
structed images. Future research will focus on extending this
framework to enhance temporal resolution, enabling improved
monitoring of dynamic environmental processes. Additionally,
we aim to explore its scalability to datasets with sparse mea-
surements, broadening its applicability across diverse remote
sensing challenges.
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