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Calais, France

serge.reboul@univ-littoral.fr

4th Ghaleb Faour
Remote Sensing Center

CNRS-Lebanon
Beirut, Lebanon

gfaour@cnrs.edu.lb

Abstract—Change detection techniques are essential for identi-
fying and quantifying variations in data over time, with applica-
tions in remote sensing, signal processing, and environmental
monitoring. The ability of GNSS-Reflectometry (GNSS-R), a
bistatic radar technique that utilizes navigation satellite signals
as signals of opportunity, to analyze surface characteristics has
recently been explored by studying the coherence of reflected
GNSS signal phases. However, detecting changes in the carrier
phase of multiple reflections GNSS signals remains unexplored
in the literature, as conventional change detection methods
are designed for linear data, whereas phase data is inherently
circular. In this work, we adapt an offline Bayesian Change-Point
Detection approach, assuming the phase noise follows a Von Mises
distribution, to detect changes in the reflected GNSS signal by
estimating change points through minimizing a contrast function.
The method is evaluated using both synthetic and real GNSS-R
measurements, demonstrating superior performance compared
to a conventional spectral change detection technique. Results
highlight the method’s accuracy in detecting surface variations
in real GNSS-R observations.

Index Terms—Phase Coherence, Remote Sensing, Change De-
tection, GNSS-Reflectometry

I. INTRODUCTION

GNSS-Reflectometry (GNSS-R) is an advanced remote
sensing technique derived from GNSS technology. It utilizes
continuously available GNSS signals reflected on Earth’s sur-
face, functioning as a passive bistatic radar. Since GNSS-R
does not require a dedicated signal transmitter, it offers a cost-
effective solution for remote sensing. Additionally, this method
provides extensive coverage and high spatial resolution, as
a GNSS receiver can simultaneously process signals from
multiple satellites. In the case of spaceborne GNSS-R mea-
surements, ground reflection tracks can span several hundred
kilometers apart [1]. However, in this work, where airborne
GNSS-R measurements are used at an average altitude of
315m and an average speed of 95km/h, sub-meter spatial
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Fig. 1: GNSS-R phase coherence concept.

resolution can be reached.
The phase coherence of the reflected GNSS carrier signal

is influenced by surface deformation and roughness, with
smoother and less deformed areas scattering the signal more
coherently [2]. As shown in Fig 1, when multiple reflections
of a GNSS signal come from a rough surface and reach a
GNSS-R sensor, the measured signal becomes non-coherent,
impacting all processed parameters, including amplitude, car-
rier frequency, and carrier phase over time. In such cases,
temporal phase coherence is lost as the geometry between
the GNSS satellite, the reflecting surface, and the GNSS-R
receiver changes over time.

In a previous work [3], the Rayleigh Test (RT) of uniformity
has been explored for detecting changes in carrier-phase
coherence, demonstrating that RT provides highly contrasted
outputs, particularly in oscillatory phase data. While [4]
demonstrates that under uniformity, the RT statistic follows a
known χ2

2 distribution, its distribution under non-uniformity
requires a more general characterization. For this reason, in
this work, we apply our change detection approach directly
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to the carrier phase, considering that the GNSS carrier phase
noise follows a Von Mises distribution.

Offline change-point detection methods are used for optimal
signal segmentation. These approaches typically rely on the
assumption that the signal’s statistical properties are known
[5]. In this work, the phase data noise is assumed to follow a
Von Mises distribution. In [6], a Bayesian estimation method
was introduced for the joint segmentation of piecewise
stationary processes. Here, we adapt the approach from [6]
to the phase of reflected GNSS signals as a univariate change
detection method. In Bayesian analysis, assigning probability
distributions to both the change points and the parameters
is essential [7]. In this study, we estimate the phase of the
reflected signal by first determining the signal’s parameters
through the spectral representation of the excess Doppler,
which is derived from the phase evolution in an open-loop
tracking configuration of a bi-static system. Subsequently, we
apply offline Bayesian Change-Point Detection to identify
the moments of change in these values. Spectral change
detection methods have been widely explored for analyzing
spectral variations in various applications. In [8] the authors
propose an unsupervised change detection (CD) method
for remote sensing that can handle large differences in
spatial resolution and spectral bands between pre-change
and post-change images. In [9] an approach for spectral
alignment of multi-temporal cross-sensor remote sensing
images was proposed using kernel canonical correlation
analysis (kCCA), the method projects images from different
and potentially disjoint spectral spaces into a common latent
space, enabling the application of standard change detection
algorithms while automatically selecting model parameters
to optimize alignment and feature extraction. [10] and [11]
have introduced a change detection method based on spectral
variations using Euclidean Distance. In this paper, we will
compare our approach with this spectral change detection
method that utilizes Euclidean Distance (ED).

This paper is structured as follows: Section 2 introduces
the phase model of the GNSS reflected signal. Section 3
provides the derivation of the equations for estimating the
parameters. Section 4 presents the results and analysis of an
experiment conducted with synthetic data, and also in section
4 demonstrates the application of our method to real GNSS-R
measurement data. Finally, Section 5 concludes the paper.

II. PHASE MODEL

The change detection approach will be applied on the phase
of the reflected GNSS signal. Let consider the following
reflected GNSS signal:

sr(t) =

U∑
u=1

auCA(t+ τ ru) sin(2πf1t+Φu(t)) + η(t) (1)

where η(t) is a Gaussian noise. CA(. . . ) the CDMA code
of the GNSS signal is defined as CA(. . . ) ∈ {−1, 1}. This

modelization assume that we have R reflections with different
Doppler (so different phase errors) and amplitudes. The carrier
phase is estimated using a Locked Loop for the direct signal
and an Open Loop for the reflected signal as mentioned in
[12]. We show that the two components in quadrature provided
by the Open Loop every period of CDMA code Tc can be
modeled as follows:

Ii =

U∑
u=1

Au cos(αu + ϕui) + ηI(i) (2)

Qi =

U∑
u=1

Au sin(αu + ϕui) + ηQ(i) (3)

where i ∈ {Tc, . . . , N ∗Tc}. ηI(i), ηQ(i) are Gaussian noises.
ϕu = 2πfdu with fdu the excess Doppler associated to the
uth reflection. The observed reflected phase can be modeled
as:

yi = arctan

(
Qi

Ii

)
= ⌊ȳi + ξi⌋ mod 2π (4)

where the phase ȳi is the weighted sum of the phases
{αu + ϕui}u=1,...,U in the circular domain and {Au}u=1,...,U

are the weights [13]. ξi is an additive noise distributed accord-
ing to a centered Von Mises distribution.

We consider the following likelihood for several reflections:

f(yi;αu, Au, ϕu, κ) =
1

2πI0(κ)
exp (κ cos (yi − ȳi)) (5)

where κ is the concentration parameter of the Von Mises
distribution. I0 is the modified Bessel function of the first
kind and order zero.

III. BAYESIAN ESTIMATION FOR CHANGE DETECTION

In our Bayesian change detection approach, Let
y = (yi, 1 ≤ i ≤ n) be the phase data. We assume that the
process is piecewise stationary. Let r = (ri, 1 ≤ i ≤ n)
be the configuration of change points in the process y. Let
t̂ = (tk, k ≥ 0, t0 = 0) be the real instant of change we want
to detect. The value of ri is 0 between two changes and 1
at the change instant. Let θ = (θ1, . . . , θK) be the sequence
of parameters in the process y, composed of k stationary
segments (θk is the parameter in the k-th segment of the
series y).

The parameters θ and the sequence of changes r are
estimated by maximizing the posterior distribution:

(r̂, θ̂) = argmax
(r,θ)

Pr(R = r | Y = y; θ) (6)

(r̂, θ̂) = argmax
(r,θ)

h(y | r, θ)f(θ)p(r) (7)

where p(r), the prior law of r, is given by:

p(r) = λK(1− λ)n−K , (8)
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with λ the probability of a change on y and

K =

n∑
i=1

ri + 1,

Let f(θ) be the probability to have the sequence of pa-
rameters θ for the process y. We do not have any prior
information on y, so we suppose f(θ) to follow a uniform
distribution. In our approach the parameters θ are estimated
as θ̂. When we take the negative logarithm of Eq. (5), we
define a penalized empirical criterion, where r (the number and
position of changes) is estimated by minimizing the penalized
contrast function defined by:

Uy(r̂) = Vy(r̂, θ̂(r̂))− ln p(r̂) (9)

The parameter λ of the penalization is fixed by the user.

IV. PARAMETERS ESTIMATION

θ̂(r̂) is the parameter vector including{
α̂u,k, ϕ̂u,k, Âu,k

}
u=1,...,U

, and κ̂k is estimated for each

segment k. The excess Doppler spectrum is given by
Γ(f) = TF (In + jQn). The expression of the norm of the
spectrum is:

|Γ(f)| =
U∑

u=1

Au,kδ(f − ϕu,k

2π
) + Ψ (10)

where δ(f) is the Dirac function, Ψ is a noise and Au,k

is the power of the uth reflection. We define
{
ϕ̂u,k, Âu,k

}
respectively as the frequencies and amplitudes of the peaks
in the spectrum Γ(f). The phase αu,k is estimated using the
phase of the excess Doppler spectrum:

α̂u,k = ∠

(
Γ(

ϕ̂u,k

2π
)

)
(11)

We show in [13], that the maximum likelihood estimate κ̂k

is given by the following equation:

κ̂k = A−1(
1

N

tk∑
n=tk−1

cos(yn − ŷk,n)) (12)

ŷk,n = arctan

(∑U
u=1 Âu,k sin(α̂u,k + ϕ̂u,kn)∑U
u=1 Âu,k cos(α̂u,k + ϕ̂u,kn)

)
(13)

with A(x) = I1(x)
I0(x)

. Finally, the contrast function can be
processed with the following equation:

Vy(r̂, θ̂(r̂)) =

K∑
k=1

{
n2 log I0(κ̂k)

− κ̂k

tk∑
n=tk−1

cos (yn − ŷk,n)

} (14)

V. EXPERIMENTATION

A. Using Synthetic data

According to [11], the Euclidean Distance (ED) used to
detect spectral changes, leading to the following mathematical
formulation:

ED =

nb∑
i=1

(T i
1 − T i

2)
2 (15)

where T i
1 and T i

2 represent the spectral values and reference
spectrum for the i-th feature, and nb is the total number of
spectral bands. A lower Euclidean distance signifies a greater
similarity between spectra, thereby indicating minimal change
in the observed region. This method of reference is compared
to the proposed approach.
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(a) Change Detection results for one realization of synthetic phase
data
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(b) Histogram of the change detection method using Euclidian
Distance (ED): Distribution of detected changes over 100 realization.
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(c) Histogram of our proposed method’s results: Distribution of
detected changes over 100 realization.

Fig. 2: Comparison of change detection and probability of
good detection for synthetic data: Evaluating the performance
of the detection methods.

In order to evaluate the proposed change detection method,
we simulated 6 seconds of GNSS signal phase data with
two reflections, consisting of three distinct segments with two
changes on y1 at t = 2 seconds and y2 at t = 4 seconds as
shown in 2 (a). The first and the third segments represent the
coherent phase and the second segment represents the non-
coherent phase. The parameter vectors α̂, ϕ̂, Â and κ̂ for the
three segments were estimated using the equations provided
in Section 4. For the first and last 2 seconds, representing the
coherent segments, the parameter estimates are computed in
Table 1. For the second segment, the parameters estimated for
the non-coherent phase are presented in Table 2.
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TABLE I: Parameter estimates for Figure 2 (a), first and last
segments (coherent).

Parameter Estimated Values
ϕ̂ 12.56, 6.28
α̂ 1.14, 1.35

Â (×106) 3.17, 0.90
κ̂ 19.19

TABLE II: Parameter estimates for Figure 2 (a), second
segment (non-coherent).

Parameter Estimated Values
ϕ̂ 12.56, 65.97
α̂ 3.01, 2.37

Â (×106) 3.16, 0.96
κ̂ 1.45

By minimizing Equation (13), the change point, r̂, was
accurately identified at t = 2 and t = 4 seconds. The
multiple search method for this change detection approach is
implemented as described in [6].

Figure 2 (b) and (c) presents the histograms of detected
changes across 100 realizations for the methods proposed
in [10] and [11], as well as for our proposed method. In
our method, the true changes at t = 2 s and t = 4 s were
successfully detected in 99 and 96 out of 100 realizations,
corresponding to detection probabilities of 0.99 and 0.96,
respectively. In contrast, when using the Euclidean Distance
method from [10] and [11], the detection probabilities for
t = 2 s and t = 4 s were only 0.58 and 0.64, respectively.
This demonstrates that our proposed method significantly
outperforms the spectral change detection approach based on
Euclidean Distance in detecting changes.

B. Using Real GNSS-R measurement

The experimental data used in this study were collected in
the northern region of France on October 19, 2020, at 14:45
UTC [14]. The GNSS-R receiver consisted of an up-looking
RHCP antenna, a down-looking LHCP antenna, and a fiber
optic coil that enabled the synchronous digitization of both
the LCHP and RHCP signals (see [14]), using a Syntony
GNSS L1-L5 mono-channel bit grabber with a 25 MHz
sampling rate. This equipment was mounted on a gyrocopter.
The flight duration was 45 minutes, with an average altitude
of 315 meters and a speed of 95 km/h. The change detection
process was realized using the recorded GPS L1 signals.

Figure 3 displays 15 seconds of phase data from the
reflected GNSS signal of GPS satellite PRN 5, divided into
two segments. The first segment corresponds to a lake, which
is a very smooth surface , while the second segment repre-
sents land (considered a rough surface). Figure 4 displays 10
seconds of phase data from the reflected GNSS signal of GPS
satellite PRN 5, divided into two segments, the first segment

represents the land, while the second segment corresponds a
smooth lake surface.
The parameter estimates for the first segment in Figure 3
represent the coherent segment. The estimated values for ϕ̂,
α̂, Â and κ̂ are provided in Table 3.

TABLE III: Parameter estimates for Figure 3, first segment
(coherent).

Parameter Estimated Values

ϕ̂ 303.99, 300.14, 297.04

α̂ -1.24, -1.14, -1.48

Â (×105) 2.67, 1.61, 0.89

κ̂ 3.84

TABLE IV: Parameter estimates for Figure 3, first segment
(non-coherent).

Parameter Estimated Values

ϕ̂ 304.59, 295.09, 2.45, 0.12, 291.93, 6.11, 305.16,
284.11

α̂ 0.96, -2.43, -1.12, 1.62, 0.31, 2.12, -1.58, 1.43

Â (×105) 1.46, 1.41, 1.34, 1.31, 1.25, 1.24, 1.22, 1.19

κ̂ 0.49

The parameter estimates for the second segment in Figure 3
represent the non-coherent phase. The estimated values for ϕ̂,
α̂, Â, and κ̂ are provided in Table 4.

TABLE V: Parameter estimates for Figure 4, first segment
(non-coherent).

Parameter Estimated Values

ϕ̂ 26.81, 305.59, 58.95, 243.73, 2.71, 66.40

α̂ 1.64, 2.80, 0.16, 1.94, 1.03, 1.38

Â (×104) 8.02, 7.83, 7.34, 6.71, 6.68, 6.58

κ̂ 0.52

The parameter estimates for the first segment in Figure 4
represent the non-coherent segment. The estimated values for
ϕ̂, α̂, Â, and κ̂ are provided in Table 5.

TABLE VI: Parameter estimates for Figure 4, first segment
(coherent).

Parameter Estimated Values

ϕ̂ 9.23, 13.94, 17.57

α̂ 0.41, 1.84, -0.54

Â (×104) 25.72, 16.61, 7.54

κ̂ 3.04

Finally, for the second segment of Figure 4, which represents
the coherent segment, the parameter estimates are shown
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in Table 6. These estimates represent the behavior of the
reflected signal in a coherent environment, with higher κ̂
values indicating improved coherence. The estimated values
for ϕ̂, α̂ and Â highlight the distinct features between the
non-coherent and coherent segments.

Fig. 3: 15 seconds of phase data from the reflected GNSS
signal of GPS satellite PRN 5, representing a smooth lake
surface(in yellow) in the first segment, and a rough land
surface(in red) in the second segment, with the detected change
accurately identified.

Fig. 4: 10 seconds of phase data from the reflected GNSS
signal of GPS satellite PRN 5, representing a rough land sur-
face(in red) in the first segment and a smooth lake surface(in
yellow) in the second segment, with the detected change
accurately identified.

VI. CONCLUSION

The proposed methodology employs an offline Bayesian
Change-Point Detection approach to identify phase variations
in reflected GNSS signals, modeling the phase with a Von
Mises distribution. Change points are estimated by minimizing
a contrast function derived after parameter estimation via
spectral representation of the excess Doppler, leveraging a
Bayesian segmentation technique adapted from prior research.
The detection process optimizes a penalized contrast function,
where the number and positions of changes are determined
through empirical likelihood estimation, with a user-defined
penalty parameter regulating segmentation sensitivity. The pro-
posed method is evaluated against a classical change detection
approach that identifies spectral changes using the Euclidean
Distance (ED), with results demonstrating its superior per-
formance. The evaluation is conducted on synthetic GNSS
phase data, and the proposed method is further applied to real
GNSS-R measurements, accurately detecting changes between
different surface characteristics.
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