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Abstract—This paper presents a non-parametric method for
3-D imaging of natural volumes using Synthetic Aperture Radar
tomography. This array processing-based technique aims at char-
acterizing a spatially distributed density of incoherent sources,
whose shape is imprecisely known. The proposed technique
estimates the moments of the reflectivity density using a low-
complexity covariance matching approach, and retrieves the
mean location, dispersion, and power of the distributed source.
Numerical simulations of realistic tomographic scenarios show
that the proposed model-free scheme achieves better accuracy
than slightly misspecified maximum likelihood estimators, de-
rived from approximately known distribution shapes.

Index Terms—Array processing, Central Moments, SAR To-
mography

I. INTRODUCTION

Synthetic Aperture Radar (SAR) tomography represents
a unique tool for characterizing natural environments at a
large scale from their 3-D electromagnetic reflectivity. Its is
particularly well adapted to the monitoring of forests [1] and
is an operating mode of ESA’s upcoming BIOMASS mission,
based on a spaceborne P-band (λ ≈ 70cm) radar. Array
processing methods may be used to estimate the elevation
and reflectivity of discrete sources, using a small number of
irregularly spaced 2-D SAR acquisitions [2]. The characteri-
zation of natural environments having a continuous density of
reflectivity, such as forests, may be severely affected by the
limited resolution performance associated with short arrays.
As suggested in [3] for a tropical forest observed at P-band,
model-based approaches using moderately spread sources may
be used to estimate the elevation of the tree canopy, but cannot
reliably determine the actual shape of the reflectivity density.
This paper addresses the problem of characterizing a narrow
diffuse source, whose exact distribution is unknown, using a
potentially irregular antenna array. The goal is to determine
the mean direction, dispersion, and power of the source, i.e.,
the height, and thickness and reflectivity of the forest canopy,
respectively.

Characterizing a diffuse source using array processing is
a recurring problem in the literature. For known distribution
shapes, efficient alternatives to the Maximum Likelihood (ML)
estimator [4] have been proposed using the COMET-EXIP
estimator [5], [6]. Furthermore, the moments of the distribu-
tion have been used to retrieve the arrival angle [7], or the
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Fig. 1: SAR Tomography principle.

dispersion of the sources. The latter is used, for example, in
the generalizations of the MUSIC and ESPRIT algorithms for
diffuse sources [8], [9]. However, to the best of our knowledge,
the central moments have never been used to characterize the
entire distribution of a source with an unknown distribution.
This paper proposes a new method to characterize a diffuse
source based on a COMET estimator and on the moments
of the distribution, without assuming any source model. It is
shown that the proposed approach can accurately reconstruct
the source characteristics, whereas incorrectly parameterized
model-based methods give highly biased results, especially for
the source power.

The remainder of this letter is organized as follows. Sec-
tion II introduces the problem statement. Section III presents
a new estimation scheme based on the distribution moments.
Section IV describes the advantages of this new scheme in
simulations. Finally, Section V concludes this paper.

II. PROBLEM STATEMENT

A. Tomographic signal model

A tomographic SAR measurement, illustrated in Figure 1,
consists of M 2D SAR acquisitions performed from slightly
shifted, and ideally parallel, tracks. Under the widely accepted
first order Born approximation, considering that the echoes of
individual scatterers sum up to form the response a scene, the

2197ISBN: 978-9-46-459362-4 EUSIPCO 2025



expression of one of the 2D SAR images of a general 3D
environement may be written as:

sm(x0, r0) =

∫
h(x− x0, r − r0)ac(r)ejkcrdr+ ϵm(x0, r0),

(1)
where r0 and x0 stand for the range and azimuth coordinates
of the images, respectively, h(x, r) is the 2D SAR ambiguity
function, kc is the carrier two-way wavenumber, r is a 3D
coordinate, and r is its associated range, i.e., the orthogonal
distance between the flight track and location r, ϵm(x0, r0)
is the normally distributed focused acquisition noise, and
ac(r) represents the coherent density of scattering of the
scene. Over natural environments, this density, consisting of
a large number of independent contributions originating from
randomly distributed sources, is usually assumed to follow a
complex circular normal distribution verifying E[ac(r)] = 0,
E[ac(r)ac(r+dr)] = 0, and E[ac(r)a

∗
c(r+dr)] = σ2

a(r)δ(dr)
with σ2

a(r), the 3D density of reflectivity of the scene.
The ambiguity associated with 2D SAR imaging may be

perceived in (1), with a cylindrical projection the 3D scattering
density onto a 2D range-azimuth domain. SAR tomography
proposes to overcome this limitation using spatial diversity
and coherent array processing. To do so, the M SAR images
are coregistered to a reference geometric frame, and are
demodulated to the spatial baseband domain. The resulting
tomographic image stack, y(x0, r0) ∈ CM follows a centered
complex circular distribution, y ∼ CN (0,R), whose second
order statistics can be used to retrieved 3D reflectivity features.
In the case of a horizontally homogeneous environment, i.e.,
when the 2D ambiguity function is narrow enough so that the
scattering density at a given elevation may be considered as
stationary within a 2D resolution cell, the expression of the
interferometric cross-correlation simplifies to:

E[yny
∗
m] =

∫
f(z)ejkznmzdz + σ2

εδ(n−m), (2)

where the range and azimuth coordinates of the concerned 2D
resolution cell have been omitted for the sake of clarity, and
f(z), the vertical component of σ2

a(r), represents the vertical
density of reflectivity. The relationship between the elevation
of a contributing source and the interferometric phase of its
response is given by kznm

= kzn −kzm , with kzn the interfer-
ometric wave number of the nth image. The vertical Fourier
resolution is given by δz = 2π/(maxn kzn − minn kzn),
whereas the vertical ambiguity may be approximated, for a
quasi-uniform wave number spacing, as zamb ≈ Mδz.

B. Covariance matrix model

The tomographic cross-correlation expression of (2) may
be generalized using antenna array processing formalism.
The covariance matrix of the tomographic acquisition can be
formulated as:

R ≜ E[yyH ] = P

∫
p(ω−ω0)a(ω)a(ω)

H dω+σ2
εIM . (3)

where ω0 denotes the mean spatial frequency, P the power
of the source, p its distribution around ω0 which satisfies

∫
p(ω) dω = 1 and

∫
ωp(ω) dω = 0, and a(ω) is a steering

vector expressed as:

a(ω) ≜
(
1 ej2πu2ω · · · ej2πuMω

)⊺ ∈ CM . (4)

In (4), uk denotes the distance (in wavelength) between the
first and the kth element in the equivalent linear array, and
ω = sinϕ, with ϕ the associated angle of arrival on the array.
The expression of R, (3), may be reformulated as:

R = a(ω0)a
H(ω0)⊙ PB + σ2

ϵIM , (5a)

where ⊙ denotes the Hadamard (element-wise) matrix pro-
duct, and B is a form matrix that depends on the scattering
distribution. Its (k, l) entry is:

[B]k,l ≜
∫

p(ω̃)ej2π(uk−ul)ω̃ dω̃, (5b)

where ω̃ ≜ ω−ω0. The objective of the analysis is to estimate,
from the covariance matrix of the observations {y}, three
characteristics of the power density of the distributed source:
(i) its mean spatial frequency ω0, (ii) its standard deviation
σω , and (iii) its power P . In the context of forest SAR
tomography, they correspond to the height z0 of the forest
canopy, its thickness σz , and its reflectivity P as illustrated in
Figure 1.

III. PROPOSED ESTIMATION SCHEME

A. COMET estimator

The COMET estimator [10] is used to estimate the charac-
teristics of the source. It is based on a generalized least squares
method, and represents an efficient alternative to the Maximum
Likelihood estimator of the unconditional model at hand [4].
If the covariance matrix is parameterized by some vector θ
as R̂(θ), the COMET estimate is obtained by minimizing the
following cost function:

J(θ) =
∥∥∥WH/2(R̄− R̂(θ))W 1/2

∥∥∥2 , (6)

where R̄ ≜ 1
N

∑N
t=1 y(t)y(t)

H is the sample covariance
matrix, y(t) is a realization of y, and W is a Hermitian
weight matrix. Two choices of weight matrix are commonly
used: W = I which corresponds to an unweighted least
square method, and W = R̄−1 which is proved to induce an
asymptotically efficient estimator if the model R̂(θ) is cor-
rectly specified [10]. Before applying the COMET estimator,
a model should be chosen for the estimated matrix R̂(θ).

B. Moment-based model

The difficulty in modeling the covariance matrix R comes
from the fact that the scatterer distribution p is unknown.
The entries of the matrices R and B are not directly related
to the distribution p, but to its Fourier Transform (FT) p̂,
described here using a non-parametric model. Assuming that
the scatterer distribution is narrow, the FT spreads over a
large domain, and is very smooth at 0. Therefore, p̂ can be
accurately approximated near the origin by the first terms
of its Taylor expansion, and represents, by definition, the
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characteristic function of the distribution. These coefficients
correspond, up to a factor, to the central moments of the
distribution. Let µd denote the d-th central moment of the
distribution, µd ≜ E[ω̃d], then µ0 = 1 and µ1 = 0. It is
proposed to parameterize p̂ by its first D central moments,
the choice of the order D being discussed in Section IV. For
a vector µ =

(
µ2 · · · µD

)⊺ ∈ RD−1, the FT ξ 7→ p̂(ξ) is
approximated by:

p̂(ξ,µ) = 1 +

D∑
d=2

jd

d!
µdξ

d. (7)

Such a parameterization has two main advantages. First, it does
not assume any scatterer distribution model, which would lead
to a loss of accuracy in the case of an incorrect specification,
as illustrated in Section IV. Second, the central moment
µ2 ≜ σ2

ω corresponds to the dispersion of the distribution to
be estimated.

The parametrization (7) induces the following model for the
matrices B and R:

B̂(µ) = 11⊺ +

D∑
d=2

jd

d!
µdU

(d), (8a)

R̂(θ) = a(ω0)a(ω0)
H ⊙ P B̂(µ) + σ2

εIM , (8b)

where the parameter vector is θ ≜
(
ω0, P, σ

2
ε , µ

⊺
)⊺ ∈ RD+2,

and the matrices U (d) depend only on the geometry of the
array. Its (k, l) entry is

[
U (d)

]
k,l

= (uk − ul)
d. In particular,

this parametrization is also valid for non-uniform arrays.

C. Estimation algorithm
Before applying the COMET estimation scheme, a trans-

parent modification is made in the parameter vector to ease
the optimization. The vector ν ≜ Pµ is used to define the
parameter vector θ ≜

(
ω0, P, σ

2
ε , ν

⊺
)⊺ ∈ RD+2. This change

of variable makes the dependence of R̂ linear on all the
parameters, except ω0. Note that as P > 0, this change of
variable is invertible.

Denote, as in [10], α ≜
(
P, σ2

ε ,ν
⊺
)⊺ ∈ RD+1 the set of

linear parameters in θ. The cost function J , (6), can be re-
expressed in vector form as:

J(ω0,α) = (r̄ −Ψ(ω0)Jα)H (W ⊺ ⊗W ) (r̄ −Ψ(ω)Jα),
(9)

where r̄ ≜ vec R̄ is the vector obtained by stacking the
columns of R̄, ⊗ denotes the Kronecker matrix product, J
is the matrix such that vec

{
PB(µ) + σ2

εIM
}
= Jα, and:

Φ(ω) ≜ diaga(ω), Ψ(ω) ≜ Φ(ω)H ⊗Φ(ω).

As pointed out in [10], for any set ω0 value, (3) is a quadratic
form in α whose minimum is achieved at:

α̂(ω0) =
[
(Ψ(ω0)J)

H(W ⊺ ⊗W )(Ψ(ω0)J)
]−1

×Ψ(ω0)J)
H(W ⊺ ⊗W )r̄. (10)

Thus, a single optimization on ω0 is required to find the
minimizer of J . By re-injecting (10) in J , one obtains:

ω̂0 = argmaxy(ω)HY (ω)−1y(ω), (11)

with:

y(ω) ≜ (Ψ(ω)J)H(W ⊺ ⊗W )r̄,

Y (ω) ≜ (Ψ(ω)J)H(W ⊺ ⊗W )Ψ(ω)J .

The one-dimensional optimization problem in (11) can be
solved with a linear search or a golden-section search. Once,
ω̂0 has been estimated, all the other parameters can be derived.
The full estimation algorithm is summarized in Algorithm 1.

Algorithm 1 Estimation algorithm.

1: Form the sample covariance matrix R̄ from the measure-
ments {y}.

2: Estimate ω̂0 by solving the one-dimensional optimization
problem (11).

3: Compute P̂ , σ̂ε, and ν̂ from (10) with ω0 = ω̂0.
4: Compute the estimates of the central moments as: µ̂ =

ν̂/P̂ . In particular, σ̂2
ω = µ̂2.

IV. NUMERICAL SIMULATIONS

This section presents numerical simulations to demonstrate
the efficiency of the proposed approach. The simulation sce-
nario illustrates a typical SAR tomography configuration. The
observed scene corresponds to a forest whose ground response
has been canceled out using a notching preprocessing step
[11]. Unless otherwise stated the selected configuration is
characterized by its height ambiguity zamb = 100 m, its
vertical resolution δz ≈ 14.3 m, canopy thickness σz of 5 m,
and number of acquisitions M = 7, which are typical settings
for forest SAR tomography [3]. The weight matrix is fixed to
W = R̄−1.

A. Influence of the order D

The possible values of D are constrained by the size of
the array. With an M -sensor array, the covariance matrix R
has up to M(M − 1) + 1 different entries. This number is
reduced to only 2M − 1 in the case of a uniform array. The
number of parameters in θ must be smaller than the number of
observables to ensure the solvability of the problem. Therefore,
the maximum value of D is:

Dmax =

{
2M − 3 for a uniform array,

M(M − 1)− 1 for a general array. (12)

Thus, the hyper-parameter D must satisfy 2 ≤ D ≤ Dmax. In
particular, identifying the dispersion of the source σω , requires
at least M = 3 sensors.

A natural question is then, should D be set to its maximum
possible value? Conceptually, the moment-based estimation
scheme is a polynomial interpolation of the characteristic
function of the scatterer distribution, and D corresponds to
the order of interpolation. On the one hand, large orders allow
to capture more complex functions. However, large orders also
increase the risk of overfitting the data and oscillations, due to
Runge’s phenomenon. In the context of SAR tomography, the
number of sensors M is small, typically 7 at most, and these
two phenomena hardly occur. Hence, larger D values provide
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Fig. 2: RMSE for different orders D and different (Gaussian and exponential) distribution shapes. The simulation parameters
are σz = 5 m, SNR = P/σ2

ε = 20 dB, M = 7 sensors (Dmax = 11), δz ≈ 14.3 m. The RMSE estimates were computed over
5 000 realizations

better accuracy. Figure 2 shows the evolution of the Root
Mean Square Error (RMSE) on the estimates as a function
of the number of snapshots N and of the order D. A clear
gain of performance is obtained as the order increases. It is
important to note that the maximum order achieves similar
accuracy with two very different, Gaussian and Exponential,
distribution shapes. This confirms that the proposed approach
is independent of the true distribution, and in particular, that it
works similarly with symmetric and asymmetric distributions.

B. Comparison with parametric schemes

The proposed approach is compared with parametric meth-
ods. Figure 3 presents RMSE values for different estimation
schemes. The proposed algorithm is compared with parametric
ML estimators, specified under different scattering distribution
assumptions, and applied onto data generated using a uniform
distribution. The ML estimators are computed under the as-
sumption of a Gaussian, exponential, and uniform distribution.
As expected, the best performing method is the ML estimator
with the correct distribution assumption. For the estimation
of ω0, the ML estimator with the Gaussian assumption also
performs better than our scheme. This is due to the fact that
both the Gaussian and uniform shapes represent symmetric
distributions. On the other hand, the exponential assumption,
which is asymmetric, yields biased results: asymmetry induces
a bias in the estimation of ω0. The proposed scheme is
easily adapted to impose the symmetry of the distribution by
considering only the even orders. Figure 3 also shows the
RMSE obtained with this adaptation which is, as expected,
more accurate for estimating ω0. For the estimation of the
dispersion σω and the power P , the two incorrect assumptions
lead to biased estimates and are outperformed by the proposed
algorithm.

The proposed scheme is based on a approximation of the
FT p̂ by the first terms of its Taylor expansion at 0. Such
an approximation is only valid if p̂ is sufficiently regular in
the neighborhood of 0, i.e., if the distribution p is sufficiently

narrow. If the dispersion σz is too large, this approximation
is no longer valid. Figure 4 compares the performance of the
schemes as a function of σz . As before, it can be noted that the
proposed scheme outperforms the misspecified ML estimators
over a wide range of values. For large dispersion, when σz is
larger than the resolution δz ≈ 14.3 m, the performance of
the moment-based algorithm decreases as expected. For small
dispersions, the proposed approach also produces poor results,
worse than the misspecified ML estimators. There are two
reasons for this: first, when the dispersion is much smaller
than the resolution, two different distributions become hard to
distinguish, and second, the proposed scheme requires a larger
number of snapshots. With more snapshots, the proposed
approach would improve its estimates, while the misspecified
ML estimators would converge to biased estimates.

V. CONCLUDING REMARKS

This paper presents a new method for estimating the char-
acteristics of a spatially distributed scattering source. The
proposed approach does not assume any distribution for the
scatterers, but relies on the estimation of the central moments
of their distribution. When applied to a SAR tomography
scenario, it allows to efficiently estimate the location of the
source, its power, and its dispersion without assuming a dis-
tribution model, which would introduce estimation biases. A
second point relevant to SAR tomography applications is that
the proposed approach does not require a uniform linear array
and can be applied with irregular baselines. Conceptually,
the moment-based estimation presented in this work is a
polynomial interpolation of the characteristic function of the
distribution. As a consequence, it is computationally efficient:
the algorithm requires only a single one-dimensional search.
However, it may suffer from the problems of overfitting or
oscillations as the resolution increases, i.e., as M increases.
These problems are not encountered in the context of SAR
tomography, but they should be further investigated in future
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Fig. 3: RMSE on the estimation of a uniform distributed source for different estimation schemes: ML estimators under three
different distribution assumptions (“Gaussian”, “Exponential” and “Uniform”), the proposed approach with D = Dmax (“No
assumption”), and its adaptation to symmetric distributions (“Symmetric”). The same configuration as in Fig. 2 is used.
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5 10 15 20

σz [m]

10−1

100

101

(b) RMSE(σ̂2
z)/σ

2
z .

5 10 15 20

σz [m]

100

(c) RMSE(P̂ )/P .

Fig. 4: RMSE as a function of the source spread σz . The same configuration as in Fig. 3 is used, the number of snapshots is
set to N = 100. For large σz values, the misspecified ML algorithms did not converge.

work. Another avenue should be the joint estimation of mul-
tiple scatterers sources, whether diffuse or point sources.
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