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Abstract—In this paper, an algebraic closed-form solution
for the moving target localization problem in a multiple-input
multiple-output radar with widely separated antennas using
bistatic range and bistatic range rate measurements is developed.
In the first stage of the proposed method, a weighted least squares
estimation is applied on a set of linear equations obtained via
nuisance parameter elimination technique to estimate the position
and velocity of the target. In the second stage, an estimate of the
error in the solution of the first stage is obtained to refine and
enhance the localization performance. The proposed algorithm
is showcased theoretically and by simulations to achieve the
Cramer-Rao lower bound performance under mild Gaussian
noise conditions. Numerical simulations are included to evaluate
performance of the proposed algorithm and verify the theoretical
results.

Index Terms—Moving target localization, multiple-input
multiple-output (MIMO) radar, singular value decomposition
(SVD), Bistatic range (BR), bistatic range rate (BRR).

I. INTRODUCTION

With the rise of multiple-input multiple-output (MIMO)
radar systems in recent years, numerous challenges have
emerged, driving extensive research efforts [1]–[6]. In partic-
ular, target localization using distributed transmit and receive
antennas has gained significant attention within the radar and
communications communities over the past decade [7]–[10].

Distributed MIMO radars leverage spatial diversity to en-
hance detection and estimation accuracy, making them a
powerful tool for target localization [11]. Various types of
measurements, including bistatic range (BR), bistatic range
rate (BRR), and angle of arrival (AOA), as well as their com-
binations, can be employed to estimate target parameters [8],
[12]. The integration of these diverse measurements plays a
crucial role in improving localization performance, particularly
in challenging environments.

Several methods have been proposed to estimate target
position using bistatic range (BR) measurements [13]–[17].
However, in moving target localization, both BR and BRR

measurements must be utilized to accurately estimate both po-
sition and velocity. Furthermore, incorporating BRR measure-
ments enhances localization accuracy by providing additional
constraints on the target’s motion.

In [18], the authors proposed an algorithm for estimating
target position and velocity by dividing the measurements into
multiple sets, each formed using a reference transmitter and
all receivers (or vice versa). A closed-form two-stage weighted
least squares (TSWLS) estimator was then applied separately
to each set, and the individual estimates were combined to
obtain the final result.

In [19], a different TSWLS approach was introduced, where,
unlike [18], all measurements were processed together in the
first stage. This method consolidates all nuisance parameters
into a single reference parameter before applying two WLS
estimators to derive the final solution.

In this paper, we propose an efficient closed-form algebraic
TSWLS solution for moving target localization in distributed
MIMO radar systems. In the first stage, we construct a set
of linear equations from measurements by eliminating the
nuisance parameters through a structured singular value de-
composition (SVD) approach; these equations are then solved
using a WLS estimator to obtain an initial estimate of the
target’s position and velocity. In the second stage, we refine
this estimate by leveraging the inherent relationships between
the nuisance parameters and the target’s position and velocity,
effectively compensating for estimation errors introduced in
the first stage. Numerical simulations demonstrate that our
approach outperforms existing localization algorithms in terms
of accuracy and robustness, particularly in low and moderate
noise scenarios.

II. MEASUREMENT MODEL

Consider a distributed MIMO radar system comprised of
M transmitters and N receivers in a 3-D space. The location
of the ith transmitter and the jth receiver are denoted by
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xt,i = [xt,i, yt,i, zt,i]
T and xr,j = [xr,j , yr,j , zr,j ]

T , respec-
tively, for i = 1, . . . ,M and j = 1, . . . , N . The velocity of the
ith transmitter and the jth receiver are represented by ẋt,i =
[ẋt,i, ẏt,i, żt,i]

T and ẋr,j = [ẋr,j , ẏr,j , żr,j ]
T respectively, for

i = 1, . . . ,M and j = 1, . . . , N . The position and the velocity
of a desired target are denoted by x0 = [x0, y0, z0]T and
ẋ0 = [ẋ0, ẏ0, ż0]T , respectively.

The noise-free BR measurement for the (i, j) transmitter-
receiver pair is defined as sum of transmitter-to-target
range, dt,i = ‖x0 − xt,i‖, and target-to-receiver range,
dr,j = ‖x0 − xr,j‖, and can be represented as

ri,j = dt,i + dr,j , (1)

The BR measurement in the presence of noise is modeled as
r̂i,j = ri,j + ∆ri,j , where ∆ri,j is the measurement noise
term. Collecting all BR measurements in a vector, yields

r̂ = r + ∆r, (2)

where r = [rT1 , . . . , r
T
M ]T , ri = [ri,1, . . . , ri,N ]T ,

r̂ = [r̂T1 , . . . , r̂
T
M ]T , r̂i = [r̂i,1, . . . , r̂i,N ]T , ∆r =

[∆rT1 , . . . ,∆rTM ]T , and ∆ri = [∆ri,1, . . . ,∆ri,N ]T . The
noise vector ∆r is considered to be a zero-mean Gaussian
random vector with covariance matrix

Qr = E
[
∆r∆rT

]
. (3)

The true BRR measurement for the (i, j)-th transmitter-
receiver pair defined as the sum of transmitter-to-target range
rate, ḋt,i = ρTx0,xt,i

(ẋ0 − ẋt,i), and target-to-receiver range
rate, ḋr,j = ρTx0,xr,j

(ẋ0 − ẋr,j), is given by

ṙi,j = ḋt,i + ḋr,j . (4)

Note that ρa,b = (a− b)/‖a− b‖ denotes the unit vector
directed from b to a. In the presence of measurement noise,
the BRR measurement can be modeled as ˆ̇ri,j = ṙi,j + ∆ṙi,j ,
where ∆ṙi,j is the noise term. The BRR measurements can
be stacked in vector form as

ˆ̇r = ṙ + ∆ṙ (5)

where ṙ = [ṙT1 , . . . , ṙ
T
M ]T , ṙi = [ṙi,1, . . . , ṙi,N ]T ,

ˆ̇r = [̂ṙ
T

1 , . . . , ˆ̇r
T

M ]T , ˆ̇ri = [ˆ̇ri,1, . . . , ˆ̇ri,N ]T , ∆ṙ =

[∆ṙT1 , . . . ,∆ṙTM ]T , and ∆ṙi = [∆ṙi,1, . . . ,∆ṙi,N ]T . The BRR
noise vector ∆ṙ is also considered to be a zero-mean Gaussian
vector with the covariance matrix Qṙ = E

[
∆ṙ∆ṙT

]
.

In this paper, we aim to estimate the unknown vector u =[
xT0 , ẋ

T
0

]T
using the measurement vector m̂ =

[
r̂T , ˆ̇r

T
]T

=

m + ∆m, where ∆m is the total measurement noise vector
with covariance matrix

Qm = blkdiag (Qr,Qṙ) . (6)

III. CLOSED-FORM SOLUTION
Stage 1: Rearranging (1) as ri,j − dt,i = dr,j and squaring

both sides, after some algebraic manipulations, gives(
xTt,i − xTr,j

)
x0 =

1

2

(
r2i,j + xTt,ixt,i − xTr,jxr,j

)
− ri,jdt,i.

(7)

By taking the time derivative of (7), it follows that

(ẋt,i − ẋr,j)
T

x0 + (xt,i − xr,j)
T

ẋ0 = ṙi,jri,j
+ẋTt,ixt,i − ẋTr,jxr,j − ṙi,jdt,i − ri,j ḋt,i.

(8)

Stacking (7) for the ith transmitter and all receivers yields, in
matrix form,

Six0 = zi + ridt,i, (9)

where Si (j, :) = xTt,i − xTr,j and zi(j) =
1
2

(
r2i,j + xTt,ixt,i − xTr,jxr,j

)
. Note that in (9), the target

position x0 and the nuisance parameter dt,i are unknown
and the nuisance parameter depends nonlinearly on the target
position. To form a set of linear equations, it is essential to
eliminate the nuisance parameter. To this end, we remove the
nuisance parameter dt,i by premultiplying (9) by the matrix
Mi, of which the vector ri is in the null space, which is
denoted by

Mi = VTDi, (10)

where Di = (diag (ri))
−1 and the matrix V is obtained from

the SVD of the matrix (IN − Z) given by

(IN − Z) =
[

U u
] [ Σz 0

0T 0

] [
VT

vT

]
= UΣzV

T ,

(11)

Z =

[
0N−1 IN−1

1 0TN−1

]
N×N

= circular shift matrix, (12)

where U and V are orthogonal matrices of length
N × (N − 1) associated with nonzero singular values of
(IN − Z), u and v are vectors spanning the null space of
(IN − Z) and (IN − Z)T , respectively, and Σz is a diagonal
matrix with N − 1 nonzero singular values of (IN − Z)T . As
(IN − Z) Diri = 0, it follows that VTDiri is zero as well.
Thus, we have

MiSix0 = Mizi. (13)

Taking the time derivative of (13) gives(
ṀiSi + MiṠi

)
x0 + MiSiẋ0 = Ṁizi + Miżi. (14)

where Ṁi = −VTD2
i diag(ṙi), Ṡi (j, :) = ẋTt,i − ẋTr,j and

żi(j) = ri,j ṙi,j + xTt,iẋt,i − xTr,jẋr,j . By stacking (13) and
(14) separately for all transmitters and then combining them,
it follows that

G1θ = h1, (15)

where θ =

[
x0

ẋ0

]
, h1 =

[
h1,1

h1,2

]
, G1 =

[
G1,1,O
G1,2,G1,1

]
,

h1,1 =
[
(M1z1)

T
, . . . , (MMzM )

T
]T
, (16)

h1,2 =

[(
Ṁ1z1 + M1ż1

)T
, . . . ,

(
ṀMzM + MM żM

)T]T
,

G1,1 =
[
(M1S1)

T
, . . . , (MMSM )

T
]T
,

G1,2 =

[(
Ṁ1S1 + M1Ṡ1

)T
, . . . ,

(
ṀMSM + MM ṠM

)T]T
.
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We should consider the noise in the measured values. Replac-
ing r and ṙ with r̂−∆r and ˆ̇r−∆ṙ in (15) and ignoring the
second-order noise terms gives the error vector as follows

ε1 = ĥ1 − Ĝ1θ, (17)

where ε1 = B1∆m, B1 =

[
B1,1,O
B1,2,B1,1

]
, and

B1,1 = blkdiag
[
VT (IN −D1dt,1) , . . . ,

VT (IN −DMdt,M )
]
,

B1,2 = −blkdiag
[
VT

(
Ḋ1dt,1 + D1ḋt,1

)
, . . . ,

VT
(
ḊMdt,M + DM ḋt,M

) ] (18)

The WLS solution of (17), which minimizes the cost function
εT1 W1ε1 with respect to θ, is [20]

θ̂ =
(
ĜT

1 W1Ĝ1

)−1
ĜT

1 W1ĥ1 (19)

where W1 is a symmetric positive definite matrix chosen here
as

W1 = E
[
ε1ε

T
1

]−1
=
(
B1QmBT

1

)−1
, (20)

Note that the weighting matrix W1 is dependent on the
unknown nuisance parameters through B1. To implement the
algorithm in the first stage, we first consider W1 = Q−1m to
obtain an initial estimate of the target position and velocity.
The estimated values of x̂0 and ˆ̇x0 are then applied to estimate
the nuisance parameters and generate a more accurate value
of W1. Repeating again the WLS solution (19) with the new
weighting matrix results in a more accurate estimate of the
target position and velocity.

Stage 2: In this stage, we refine the solution obtained in the
first stage. Specifically, we provide estimates of errors in the
estimation of the target position and the target velocity, ∆x0

and ∆ẋ0, and subtract them from the estimated target position
and velocity (obtained in the first stage). Such a refinement can
result in a substantial improvement in the performance of the
proposed method.

We substitute the terms x0 = x̂0 −∆x0, ẋ0 = ˆ̇x0 −∆ẋ0,
ri,j = r̂i,j − ∆ri,j and ṙi,j = ˆ̇ri,j − ∆ṙi,j into (7)
and (8). Further, we approximate dt,i = ‖x0 − xt,i‖ and
ḋt,i = ρTx0,xt,i

(ẋ0 − ẋt,i) in (7) and (8) with the first two
terms of their corresponding Taylor series. That is

dt,i = ‖x̂0−xt,i−∆x0‖ ≈ ‖x̂0−xt,i‖−ρTx̂0,xt,i
∆x0, (21)

ḋt,i=
(x̂0 − xt,i −∆x0)

T
(
ˆ̇x0 − ẋt,i −∆ẋ0

)
‖x̂0 − xt,i −∆x0‖

≈ ρTx̂0,xt,i

(
ˆ̇x0 − ẋt,i

)
− ρ̇Tx̂0,xt,i

∆x0 − ρTx̂0,xt,i
∆ẋ0,

(22)
where ρa,b is given below (4) and ρ̇a,b is the time derivative of

ρa,b defined as ρ̇a,b =
(
I− (a−b)(a−b)T

‖a−b‖2

)
(ȧ− ḃ)/‖a− b‖.

As a result, (7) and (8), after neglecting the error terms higher

than the linear ones, are expressed as follows
1
2

(
xTt,ixt,i − xTr,jxr,j + r̂2i,j

)
− (xt,i − xr,j)

T x̂0

−r̂i,j‖x̂0 − xt,i‖+ (xt,i − xr,j + r̂i,jρx̂0,xt,i
)T∆x0

≈
(
r̂i,j − ‖x̂0 − xt,i‖

)
∆ri,j ,

(23)

(
ẋTt,ixt,i − ẋTr,jxr,j + ˆ̇ri,j r̂i,j

)
− (ẋt,i − ẋr,j)

T x̂0

−(xt,i − xr,j)
T ˆ̇x0 − ˆ̇ri,j‖x̂0 − xt,i‖ − r̂i,jρTx̂0,xt,i

(
ˆ̇x0 − ẋt,i

)
+(ẋt,i − ẋr,j + ˆ̇ri,jρx̂0,xt,i

+ r̂i,jρ̇x̂0,xt,i
)T∆x0

+(xt,i − xr,j + r̂i,jρx̂0,xt,i
)T∆ẋ0

≈
(

ˆ̇ri,j − ρTx̂0,xt,i

(
ˆ̇x0 − ẋt,i

))
∆ri,j

−
(
r̂i,j − ‖x̂0 − xt,i‖

)
∆ṙi,j .

(24)
Applying (23) and (24) for all transmitters and receivers and
combining them, we obtain

ε2 = ĥ2 − Ĝ2∆θ, (25)

where ε2 = B̂2∆m, ĥ2 =

[
ĥ2,1

ĥ2,2

]
, Ĝ2 =

[
Ĝ2,1,O

Ĝ2,2, Ĝ2,1

]
,

B̂2 =

[
B̂2,1,O

B̂2,2, B̂2,1

]
,

ĥ2,1(k) = 1
2

(
xTt,ixt,i − xTr,jxr,j + r̂2i,j

)
−(xt,i − xr,j)

T x̂0 − r̂i,j‖x̂0 − xt,i‖,
ĥ2,2(k) =

(
ẋTt,ixt,i − ẋTr,jxr,j + ˆ̇ri,j r̂i,j

)
−(ẋt,i − ẋr,j)

T x̂0 − (xt,i − xr,j)
T ˆ̇x0

−ˆ̇ri,j‖x̂0 − xt,i‖ − r̂i,jρTx̂0,xt,i

(
ˆ̇x0 − ẋt,i

)
,

Ĝ2,1(k, :) = −(xt,i − xr,j + r̂i,jρx̂0,xt,i
)T ,

Ĝ2,2(k, :) = −(ẋt,i − ẋr,j + ˆ̇ri,jρx̂0,xt,i

+r̂i,jρ̇x̂0,xt,i
)T ,

B̂2,1(k, k) = r̂i,j − ‖x̂0 − xt,i‖,
B̂2,1(k, k) = ˆ̇ri,j − ρTx̂0,xt,i

(
ˆ̇x0 − ẋt,i

)
,

(26)

and k = (i− 1)N + j. The WLS solution of (25) is [20]

∆θ̂ =
(
ĜT

2 W2Ĝ2

)−1
ĜT

2 W2ĥ2, (27)

where W2 is the weighting matrix given by

W2 =
(
B̂2QmB̂T

2

)−1
. (28)

Finally, the refined solution of the target position and velocity
is obtained via

θ̃ = θ̂ −∆θ̂, (29)

where θ̃ denotes the final estimate of the target position and
velocity θ.

IV. PERFORMANCE ANALYSIS

In this section, we aim to establish the efficient performance
of the proposed method. To this end, we first compute the
error covariance matrix of the proposed estimator. Then, we
showcase that the performance of the proposed estimator can
achieve the CRLB under mild Gaussian measurement noise
conditions.
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To derive the error covariance matrix of the proposed
estimator, it is needed to compute θ̃ − E

{
θ̃
}

. specifically,

we express θ̂ and ∆θ̂, the estimated values in the first and
second stages, as θ + ∆θ and ∆θ + δθ, respectively. Then,
we have

θ̃ − E
{
θ̃
}

= E {δθ} − δθ. (30)

Subtracting ∆θ from both sides of (27), defining δθ = ∆θ̂−
∆θ, and using (25), we obtain

δθ =
(
ĜT

2 W2Ĝ2

)−1
ĜT

2 W2ε2. (31)

The direct computation of E {δθ} is a rather intractable task as
the error terms and noise exist in both Ĝ2 and ε2. In the case
of small measurement noise and error (i.e., when ∆ri,j � ri,j
and ∆ṙi,j � ṙi,j for i = 1, . . . ,M and j = 1, . . . , N and
∆θ(l)� θ(l) for l = 1, . . . , 6), the corresponding terms in
Ĝ2 and B̂2 can be ignored. As a result, one can relate δθ to
the measurement noise vector ∆m via a linear dependence as

δθ ≈
(
GT

2 W2G2

)−1
GT

2 W2B2∆m. (32)

It follows from (32) that E {δθ} = 0. Thus, the error covari-
ance matrix of the proposed estimator can be approximately
expressed as follows

cov(θ̃) = cov(δθ) ≈
(
GT

2 W2G2

)−1
. (33)

The CRLB of θ equals the inverse of the Fisher information
matrix. Under the Gaussian measurement noise model, it is
simplified as [20]

CRLB(θ) =
(
∇Tθ (m)Q−1m ∇θ(m)

)−1
. (34)

where ∇θ(m) denotes the partial derivative of the true mea-
surement vector m with respect to the unknown vector θ and
can be expressed as follows

∇θ(m) =

[
C O

Ċ C

]
, (35)

where C and Ċ are matrices of size MN × 3 in which the kth
rows are given by C(k, :) = ρTx0,xt,i

+ρTx0,xr,j
and Ċ(k, :) =

ρ̇Tx0,xt,i
+ ρ̇Tx0,xr,j

, where ρa,b and ρ̇a,b are given below (4)
and (22), respectively, and k = (i− 1)N + j for i = 1, . . . ,M
and j = 1, . . . , N . If we substitute W2 given by (28) in (33),
we will obtain the following expression for the covariance
matrix of the proposed estimator

cov(θ̃) ≈
(
GT

3 Q−1m G3

)−1
, (36)

where we have defined G3 = B−12 G2. It can be noticed
that the above expression for the covariance of the proposed
estimator and the CRLB given by (34) have similar forms. In
addition, if we form G3 using some straightforward mathe-
matical manipulations, we obtain

G3 = ∇θ(m). (37)

As a result, we analytically confirm under the small Gaussian

TABLE I: True Position and Velocity of Transmitters and
Receivers (in SI units).

Tx no. i xt,i yt,i zt,i ẋt,i ẏt,i żt,i

1 R cos(π/6) R/2 300 10 10 10
2 0 2R 250 20 0 0
3 −R cos(π/6) R/2 400 10 100 10
4 −2R cos(π/6) −R 100 20 15 10
5 0 −R 200 40 30 0
6 2R cos(π/6) −R 150 50 25 15

Rx no. j xr,j yr,j zr,j ẋr,j ẏr,j żr,j

1 0 0 100 30 −20 20
2 2R cos(π/6) 0 200 −30 10 20
3 R cos(π/6) 3R/2 350 10 −20 10
4 −R cos(π/6) 3R/2 250 10 20 30
5 −2R cos(π/6) 0 400 −20 10 10
6 −R cos(π/6) −3R/2 150 20 −10 10
7 R cos(π/6) −3R/2 300 15 20 0

measurement noise that cov(θ̃) ≈ CRLB(θ).

V. SIMULATIONS

The radar geometry used for numerical simulations is
demonstrated in Fig. 1. We consider a MIMO radar with
M = 6 transmitters and N = 7 receivers, whose positions and
velocities are tabulated in Table I, where R is the side length of
each hexagon depicted in Fig. 1 and is considered to be 1000
m. In simulations, we consider two targets located at x

(1)
0 =

[−0.5R,−0.5R, 0.5R]
Tm and x

(2)
0 = [2R, 2R, 2R]

Tm, rep-
resenting a near-field and a far-field target, respectively. The
velocity of both targets are considered to be the same and equal
to ẋ

(1)
0 = ẋ

(2)
0 = [50, 50, 20]

Tm/s. The localization accuracy
is assessed via the root mean squares error (RMSE) criterion,

which is defined as RMSE (x0) =

√∑L
l=1

∥∥∥x̂(l)
0 − x0

∥∥∥2/L
for position and RMSE (ẋ0) =

√∑L
l=1

∥∥∥ˆ̇x(l)

0 − ẋ0

∥∥∥2/L for

velocity, where x̂
(l)
0 and ˆ̇x

(l)

0 are the estimates of x0 and ẋ0

at the lth Monte-Carlo run, respectively, and L = 1000 is the
number of runs. The noise covariance matrix is considered as
Qm = blkdiag (σrJ1, σṙJ1), where σṙ = 0.01σr, J1 is an
MN × MN diagonal matrix with diagonal elements equal
to one. In the simulation, σ2

r varies from 10−4 to 102. The
position and velocity RMSE of the different estimators versus
σ2
α for both targets, x

(1)
0 and x

(2)
0 , are represented in Fig. 2

(a) and (b) and Fig. 3 (a) and (b), respectively. As shown
in these figures, the proposed estimator outperforms the other
algorithms in both cases. It can be seen that the proposed
method can attain the CRLB performance for both position
and velocity up to relatively high noise levels.

VI. CONCLUSION

We proposed an efficient algebraic TSWLS method for
moving target localization in distributed MIMO radar systems.
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Fig. 2: Performance comparison of different localization esti-
mators for the first target x
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0 .

Simulation results demonstrated that the proposed approach
achieves near-Cramér-Rao Lower Bound (CRLB) accuracy un-
der mild noise conditions and outperforms existing localization
methods in both position and velocity estimation.
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