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Abstract—The use of digital sequences in automotive radars
provides better support for multiple antennas in imaging radar
applications. However, a challenge in such digital radars is the
higher complexity in the receiver processing chain, starting from
the bank of correlators used to estimate the range of targets.
State-of-the-art correlators are implemented using using fast
Fourier transforms (FFTs), which have log linear complexity in
the FFT length used in correlating the digital sequence with the
received sequence. This results in high complexity due to the
large sequence lengths needed to achieve high sensing range and
fine velocity resolution. We propose an adaptive block FFT-based
correlator processing method that exploits sparsity in the range
domain. In comparison to conventional FFT-based correlator
processing, the proposed method provides a significant reduction
in complexity.

Index Terms—Frequency-domain correlator, range processing,
digital radar.

I. INTRODUCTION

Automotive radars play a critical role in providing robust
scene understanding in an advanced driver assistance system
(ADAS) to improve driving comfort and road safety while
enabling higher levels of automation. Multiple input multiple
output (MIMO) imaging radar is essential for achieving high-
resolution measurements of target range, speed, and angular
position [1], [2]. However, conventional analog frequency
modulated continuous wave (FMCW) radars face MIMO scal-
ing limitations due to high Doppler velocity ambiguities. The
use of orthogonal digital waveforms has therefore attracted
attention [3]–[6]. An example of such radars is a phase mod-
ulated continuous wave (PMCW) radar that uses orthogonal
binary codes and advanced signal processing [7]–[9].

A binary PMCW radar, shown in Fig. 1, transmits a
continuous RF carrier modulated by binary sequences with
levels {-1, +1}, representing 0° or 180° phase shifts. High-
performance modulation relies on sequences with favorable
auto-correlation and cross-correlation properties, a large set
size, and longer code lengths to support MIMO and improve
target discrimination. To achieve high unambiguous detection
range and fine velocity resolution, a long sequence length
is required. Commonly used sequences include almost per-
fect auto-correlation sequences (APAS), zero correlation zone
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sequences, and Gold codes [10]–[12], which modulate a 79
GHz local oscillator (LO). The received signal, delayed and
scaled by range, undergoes amplification, down-conversion,
digitization, and then range and Doppler processing.

Fig. 1: Illustrative single antenna PMCW radar.

Range processing in PMCW radars is done using a correla-
tor bank to estimate signal delays reflected from targets. Cor-
relators can operate in the time domain [13]–[16], with simple
hardware at the cost of higher computational demand, or in
the frequency domain [17], [18], where fast Fourier transforms
(FFTs) enable efficient parallel processing especially for large
values of Lc. Real-time radar applications demand reduced
correlation complexity with lower power consumption. We
address the problem of reducing the complexity of such
frequency-domain correlators.

Digital correlators are also used in other applications like
wireless ranging and global navigation satellite system (GNSS)
acquisition, and the problem of correlator design with reduced
complexity has been considered in the past. Studies have
focused on fast algorithms to reduce the complexity of time-
domain correlators [14]–[16]. In the frequency domain, block
FFT splitting based correlators [17], [19] were proposed based
on the well-known block FFT Cooley-Tuckey implementa-
tion [20] to lower the memory resource use and processing
complexity of GNSS signal acquisition. The correlation archi-
tecture involves splitting FFTs into smaller, fixed block FFTs
spanning the full range. This however limits the flexibility and
scalability of such a solution for PMCW radars, and fails to
exploit the sparsity inherent in automotive radar signals.

In this paper, we exploit the inherent sparsity in the radar
received signals. Building on the full block correlator in [19],
the adaptive FFT-based block correlator with Doppler process-
ing proposed in our paper reduces complexity by dynamically
identifying and processing only the relevant range profile
blocks, where potential targets are present. Simulation results
demonstrate that the proposed block correlator maintains target
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detections while achieving superior computational efficiency
compared to a traditional FFT-based correlator.

II. FREQUENCY DOMAIN CORRELATOR

In a PMCW radar system with a code c[n] of length
Lc and symbol duration Tc, range processing is performed
using correlator banks that compare the received signal y[n]
with delayed versions of c[n] at τTc. The resulting range
profile exhibits peaks at time-of-flight reflections, enabling dis-
tance estimation. Since time-domain correlation corresponds
to element-wise multiplication in the frequency domain, the
range profile r[τ ] can be computed using the FFT, element-
wise multiplication, and inverse FFT, as shown in Fig. 2. As
the lengths Lc of commonly used sequences such as APAS
and Gold codes are generally not powers of two, both the code
c[n] and the received signal y[n] are zero-padded to the nearest
power-of-two length L to enable efficient FFT implementation.

Fig. 2: Block diagram of a frequency-domain correlator.

The FFT-transformed received and transmitted signals are
respectively

Y [k] =

L−1∑
n=0

y[n]e−j 2π
L kn, C[k] =

L−1∑
n=0

c[n]e−j 2π
L kn. (1)

The frequency-domain correlation is then obtained as

R[k] = Y [k]C∗[k] =

L−1∑
τ=0

L−1∑
n=0

y[n]c[(n− τ) mod L]︸ ︷︷ ︸
r[τ ]

e−j 2π
L kτ .

(2)
A subsequent IFFT results in the time-domain range profile

r[τ ] =
1

L

L−1∑
k=0

R[k]ej
2π
L kτ . (3)

Although this frequency-domain approach has a reduced com-
plexity of O(L logL) compared to time-domain correlators, it
remains computationally demanding for large Lc, motivating
the need for lower complexity approaches.

III. ADAPTIVE FFT-BASED BLOCK CORRELATOR

In automotive radar scenarios, only a limited number of
targets exist within the radar’s field of view. Furthermore,
in ADAS applications, the nearby targets are more relevant
for actions like braking and cruise control. Consequently,
radar signals exhibit inherent sparsity, with many range bins
containing minimal or no relevant target information, and only
a small subset of detections being relevant.

Leveraging range sparsity, we propose an adaptive FFT-
based block correlator by dynamically identifying and pro-
cessing only the relevant range profile blocks where potential
targets are likely to be present. While primarily designed for
range processing, it operates within a broader radar framework
that includes Doppler processing, as illustrated in Fig. 3.
The figure depicts a single frame consisting of M fast-time
durations. Range processing is performed within each fast-
time duration, while Doppler processing analyzes phase shifts
across pulses to estimate target velocities. The figure provides
an overview of this integrated processing pipeline, and the key
processing steps are now outlined.

A. Initial Range Processing

During the initial fast-time duration of the radar frame,
a full block correlator generates a preliminary range profile.
This correlator implementation, shown in Fig. 4 is based on
segmenting the whole sequence into d smaller blocks. We first
note that the full block correlator in Fig. 4 is equivalent to the
frequency domain correlator in Fig. 2, [17], [19]. We then
describe the involved processing steps, based on which the
proposed adaptive structure of Fig. 3 builds on.

1) Padding and segmentation: The received y[n] is first
zero-padded to a length L that is a multiple of d and a power
of 2, and then segmented into d blocks yi[n] where:

yi[n] = y[n+ (i− 1)L/d], n ∈ {0, 1, · · · , L/d− 1}. (4)

The transmitted code sequence c[n] is similarly padded, seg-
mented and could be precomputed for storage.

2) Combination: In the combination block, each segment
yi[n] is processed using phase shifts as follows:

ỹm[n] =

(
d∑

i=1

yi[n]e
−j2π(m−1)(i−1)

d

)
e

−j2π(m−1)n
L . (5)

3) L/d-point FFTs: A L/d-point FFT is applied to ỹm[n]
for each m, yielding:

Ỹm[k] =

L/d−1∑
n=0

ỹm[n]e
−j2πkn

L/d , k ∈ {0, · · · , L/d− 1}. (6)

Ỹm[k] can be seen as a down-sampled version of the original
Y [k] by a factor d, expressed as Ỹm[k] = Y [dk+m−1]. The
relationship follows directly from the expression of Y [k] in
terms of its segmented parts.

Y [k] =

L/d−1∑
n=0

(
d∑

i=1

yi[n]e
− j2πk(i−1)

d

)
e−

j2πkn
L . (7)

4) Multiplication in the frequency domain: For each seg-
ment (m = 1, 2, . . . , d), element-wise multiplication is per-
formed between Ỹm[k] and the conjugate of C̃m[k], yielding:

R̃m[k] = Ỹm[k]C̃∗
m[k]. (8)
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Fig. 3: Architecture of the adaptive FFT-based block correlator with Doppler processing. Adaptation occurs across different
frames, while each frame involves a reduced size of FFT blocks in the correlator.

Fig. 4: Structure of block FFT-based correlator.

By substituting Ỹm[k] and C̃m[k], the down-sampling rela-
tionship between R̃m and R is established as follows:

R̃m[k] = R[dk +m− 1] (9)

=

L/d−1∑
τ=0

(
d∑

i=1

ri[τ ]e
−j2π(dk+m−1)(i−1)

d

)
e

−j2π(dk+m−1)τ
L

=

L/d−1∑
τ=0

(
d∑

i=1

ri[τ ]e
−j2π(m−1)(i−1)

d

)
e

−j2π(m−1)τ
L

︸ ︷︷ ︸
r̃m[τ ]

e
−j2πkτ

L/d

where ri[τ ] = r[τ + (i− 1)L/d] represents the ith segmented
range profile.

5) L/d-point IFFTs: The IFFT is applied to compute r̃m[τ ]
for each m, where τ ∈ {0, . . . , L/d− 1}, given by:

r̃m[τ ] =
1

L/d

L/d−1∑
k=0

R̃m[k]e
j2πkτ
L/d . (10)

6) Reconstruction: Each block range profile r̂b for b ∈
{1, 2, · · · , d} could be reconstructed independently by com-
bining the segmented components r̃m[τ ] as follows:

r̂b[τ ] =
1

d

d∑
m=1

r̃m[τ ]e
j2π(m−1)τ

L e
j2π(b−1)(m−1)

d (11)

=
1

d

d∑
i=1

ri[τ ]

(
d∑

m=1

e
−j2π(m−1)(i−b)

d

)
= rb[τ ].

Thus the full block correlator gives the same range profile as
the frequency-domain correlator in Fig. 2.

B. Range Bin Selection for Efficient Processing

The initial range profile is analyzed using a noise power-
dependent threshold detector, such as the constant false alarm
rate (CFAR) algorithm, to identify range bins with potential
targets, highlighted in orange in Figure 3. Once potential tar-
gets are detected, the algorithm determines the set of possible
values for b, where b represents the blocks containing relevant
range bins where targets are present. For example, with a total
range of L = 1024 bins divided into d = 4 equal blocks of
256 bins each, the targets at bins 150 and 700 fall into blocks
[1, 256] and [513, 768], respectively. As a result, the algorithm
selects blocks b = 1 and b = 3 for further processing.

C. Reduced FFT-based block correlator

Once the selection of range bin blocks is done, for the
remaining M −1 slow-time durations in one frame, a reduced
block correlator is employed. Given d blocks and the identified
set of possible values for b, the reduced block correlator
reconstructs only the relevant block range profiles r̂b by
combining the segmented components r̃m[τ ] as given in (11).

D. Frame-by-frame adaptation

After one frame, Doppler processing is applied to each
relevant block r̂b across all M fast-time durations using M -
point FFTs. Instead of covering the full range which requires
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L instances of M -point FFTs, the reduced correlator focuses
only on regions with potential targets. This reduces the com-
putational burden to L/d instances of M -point FFTs when
processing a single block, significantly improving efficiency.
Complexity analysis will be discussed in the following section.

At the start of each new frame, the system re-evaluates
the full range bins to account for changes in the target
environment. Since the range bins of interest are updated every
measurement period (typically, 20–30 ms), target movement
within this duration is small. Consequently, detected targets
are likely to remain within the adjacent bins in the same block,
ensuring consistent tracking and detection. By dynamically
adapting the selection of relevant blocks for both range and
Doppler processing on a frame-by-frame basis, the proposed
approach effectively reduces computational complexity while
maintaining reliable performance.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the adaptive FFT-based
block correlator in comparison to the conventional frequency-
domain correlator, focusing on both range and Doppler pro-
cessing. Since the complexity of Doppler processing is directly
influenced by correlation results, as discussed in Section III-D,
it is also incorporated into the analysis.

A. Complexity Analysis

Consider a MIMO configuration with NT × NR antennas
and a slow-time size M . The well-known computational
complexity of an N -point FFT [20] requires N

2 logN complex
multiplications and N logN complex additions. Each complex
multiplication involves 4 real multiplications and 2 real addi-
tions, while a complex addition involves 2 real additions.

1) Complexity of applying FFT-based correlator: As shown
in Figure 2, range processing involves two L-point FFTs
and one L-point IFFT. Since the FFT of the transmitted
codes can be precomputed and stored, the computational
complexity is determined by three main operations: computing
Y [k], performing multiplication in the frequency domain, and
applying the IFFT. For Doppler processing in a single antenna
system, we need L times an M -point FFT. In a MIMO radar
configuration, the computational complexity for both range
and Doppler processing is detailed in Table I.

2) Complexity of the adaptive FFT-based block correla-
tor: According to (5), the combination step requires dL
complex multiplications and additions, along with an ad-
ditional (d − 1)L/d complex multiplications for phase ad-
justments, which simplifies to L. The d block FFTs, each
of length L/d, require 2L log2 L/d real multiplications and
3L log2 L/d real additions. For the MIMO configuration, the
total complexity is scaled by a factor of NRM . The multipli-
cation in the frequency domain requires NTNRML complex
multiplications. For the IFFT stage, the d IFFTs of length
L/d require 2NTNRML log2 L/d real multiplications and
3NTNRMLc log2 L/d real additions. The final reconstruction
step, as described in (11), involves (d−1) L/d-length complex
multiplications and additions, which are approximated as L.

For Doppler processing, we only need L/d times an M -point
FFT. The complexity for applying the proposed correlator is
provided in Table I.

3) Complexity comparison: We now assess the computa-
tional complexity of the fixed and adaptive correlators in terms
of operations shown in Tables I. For evaluation, we consider a
4× 4 MIMO configuration and slow time size of M = 2048.
The complexity is analyzed using a Gold sequence of length
2047. Since FFT operations require zero-padding to the nearest
power of two, we set L = 2048.
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Fixed FFT-based correlator
Adaptive FFT-based block correlator

Fig. 5: Complexity comparison of range and Doppler process-
ing in terms of total # MUL and # ADD operations for a Gold
sequence.

As shown in Fig. 5, the adaptive block correlator ex-
hibits lower computational complexity in comparison to the
frequency-domain correlator for different d. The most sig-
nificant reduction occurs at d = 8, where it achieves ap-
proximately a 32% decrease in complexity compared to the
conventional frequency-domain correlator.

B. Simulation Result

Simulations were conducted with optimal parameter d = 8,
considering two targets: one car with an RCS of 10 dBsm at
50 m and 10°, moving at 20 m/s, and a truck with an RCS of
25 dBsm, positioned at 100 m and -5°, moving at 30 m/s.

From initial range processing, targets are located in the
second and third blocks, requiring the reconstruction of r̂2
and r̂3. As shown in Fig. 6, the range-Doppler map (RDM)
comparison indicates that the proposed approach preserves
the target peak and maintains the same noise floor as the
conventional frequency domain approach, ensuring an equiv-
alent signal-to-noise ratio (SNR) and thus target detection
performance. Simulations show a reduction in computation
time from 8.91 to 5.16 seconds, achieving significant speedup
without compromising detection accuracy. While this evalua-
tion is based on MATLAB simulations and does not account
for hardware processing, the reduction in processing time is
indicative of the achievable gains.

V. CONCLUSIONS

We presented an adaptive FFT-based block correlator for
digital automotive radar. By selectively processing only the
range bins of interest, this approach significantly reduces
computational complexity while maintaining target detections.
Simulations confirmed its effectiveness, showing that target
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TABLE I: Complexity Comparison: FFT-based vs. adaptive FFT-based block correlator

Operation FFT-based Correlator Adaptive FFT-based Block Correlator
Range Processing

# MUL 2(NR +NTNR)ML log2 L+ 4NTNRML 2(NR +NTNR)ML log2
L
d
+ (8NT + 4d+ 4)NRML

# ADD 3(NR +NTNR)ML log2 L+ 2NTNRML 3(NR +NTNR)ML log2
L
d
+ (6NT + 4d+ 2)NRML

Doppler Processing
# MUL 2NTNRML log2 M 2NTNRM L

d
log2 M

# ADD 3NTNRML log2 M 3NTNRM L
d
log2 M

(a) RDM with full FFT-based correlator.

(b) RDM with adaptive FFT-based block correlator.

Fig. 6: RDM Comparison

SNR is preserved while providing processing efficiency for
large sequence lengths.

Future work could explore incorporating other sensing
modalities or previous RDM estimations to provide informa-
tion on range sparsity to enhance the adaptive determination of
the range bins of interest. Additionally, the current complexity
analysis is based on individual block results; integrating block
combinations into the analysis would provide an analytical
framework for selecting the optimal d and b.
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