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Abstract—This paper proposes a novel millimeter-wave 

(mmWave) radar-based automotive in-cabin monitoring solution 
utilizing the combination of advanced signal processing and edge-
AI techniques to accurately detect occupants in dynamic driving 
scenarios and ensure reliable decisions in unseen environments. By 
leveraging the high-resolution capabilities of mmWave radar, this 
study aims to provide a robust, cost-effective, and non-intrusive 
solution compared to traditional technologies like weight sensors. 
We present a detailed discussion on the end-to-end processing 
chain with its optimized implementation on Texas Instruments (TI) 
AWRL6844 mmWave sensors for real-time occupancy detection. 
Experimental results and benchmarks demonstrate the 
effectiveness of our approach with >98% occupancy detection 
accuracy in driving car scenarios using a single mmWave sensor 
and a real-time implementation that achieves a 5Hz frame rate.  
Additionally, we introduce the dataset, comprising numerous real-
world driving scenarios, utilized for model training and validation. 
This paper also provides an overview of the custom-built toolset 
developed to support the entire classification workflow and 
address a scalable framework to solve further challenges for in-
cabin sensing, such as occupant classification (child vs. adult, etc.). 

Keywords— Millimeter-wave radar, radar signal processing, 
tinyML, edge-AI, automotive in-cabin occupancy detection. 

I. INTRODUCTION 
Automotive in-cabin occupant detection systems, such as seat 

belt reminders and child presence detectors, have become essential 
safety features in modern vehicles [1][2]. The main requirements 
expected from these systems include reliable detection and 
localization of any life in the car, accurate identification of the 
detected occupant in any seat, and timely alerting mechanisms to 
notify the car's central processing units with low latency to take 
necessary safety-critical actions. These systems must operate under 
various conditions, such as different passenger sizes and postures, 
and environmental factors like temperature and lighting. Besides, 
due to cost concerns in the automotive industry, a single sensor 
performing all these mentioned features is desired to provide a cost-
effective solution while maintaining comprehensive in-cabin safety 
monitoring. Recent advancements in frequency-modulated 
continuous wave (FMCW) millimeter-wave (mmWave) radar 
technology offer numerous advantages over conventional passive 
sensors to address such requirements and enhance automotive in-
cabin occupancy detection tasks [3][4]. 

Child presence detection systems target scenarios where the 
vehicle is stationary, focusing on the safety of children left 
unattended in parked cars [5][6]. On the other hand, radar-based 
detection and localization in moving vehicles present unique 
challenges compared to stationary scenarios, particularly for seat 
belt reminder systems. In a moving car scenario, the radar system 

must contend with a dynamic environment, where relative motion 
between the radar and target objects inside the vehicle introduces 
varying signal reflections that may diverge from the signal model 
assumed at the algorithm design stage. The dynamic road and 
driving conditions that impact the stability and accuracy of reflected 
radar signals typically create unwanted clutter, complicating the 
identification of occupant presence. Therefore, this paper primarily 
focuses on seat belt reminder applications to ensure reliable 
occupancy detection and localization in moving car scenarios. 

In radar-based applications, especially in the edge-AI domain, 
building solutions solely based on machine learning techniques 
often falls short of robustness due to the extensive data requirements 
and, more importantly, the complexity of models needed to 
generalize across diverse scenarios. To understand the underlying 
features in every corner case, a deeper network and a vast amount 
of data are needed to achieve a certain level of accuracy and 
robustness [7][8]. Since such high-accuracy deep learning models 
become memory- and compute-intensive, they are typically 
infeasible for tiny edge processors. Due to the cost-related concerns 
in the automotive industry, it is highly desirable to solve this 
problem using the resources embedded in a radar system-on-chip 
[9] without the need for a high-end external processor. 

Conversely, model-based signal processing offers the 
advantage of leveraging domain-specific knowledge and 
deterministic physics-aware algorithms to enhance signal 
interpretation and noise reduction, hence the overall performance 
and robustness, which is crucial in safety-critical applications. 
However, such model-based methods [10] alone may not be 
sufficiently adaptive to cover the full spectrum of scenarios 
encountered in dynamic environments due to many unknowns in 
the underlying model assumptions. 

Therefore, in this paper, we propose a hybrid approach that 
harnesses the strengths of machine learning and model-based signal 
processing to achieve a >98% accuracy level and enable a 
computationally efficient, lightweight solution for edge-AI 
deployment. This combined strategy not only offers more accurate 
decisions with reduced complexity but also enhances generalization 
across varying operational contexts, ultimately ensuring a reliable 
radar-based occupancy detection system. 

II. PROPOSED SOLUTION 
In the overall processing chain, we propose a two-stage 

algorithm. The first stage (i.e., low-level detection layer) involves 
processing analog-to-digital converter (ADC) data (i.e., the beat 
signal) received from the radio-frequency (RF) front-end and 
generating the point cloud, representing the spatial information of 
living objects from the radar signal reflections in a three-
dimensional (3D) environment. In the second stage (i.e., high-level 
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decision layer), the point cloud data undergoes various pre-
processing and feature extraction blocks to enhance the quality and 
relevance of the information. Subsequently, the features extracted 
from the refined point cloud data are fed into a lightweight classifier 
model, which performs the classification task to decide whether the 
corresponding seat is occupied or not. This two-stage approach 
leverages the strengths of both advanced signal processing and 
machine learning, ensuring robust and scalable performance for in-
cabin occupancy detection applications and enabling an efficient 
implementation. 

The diagram in Fig. 1 illustrates the main processing blocks and 
algorithm flow of the low-level detection layer. The range 
processing step (e.g., windowing and fast Fourier transform (FFT)) 
is first applied to the ADC samples of each chirp from each virtual 
antenna to create the range spectrum of the target scene. The static 
clutter removal step is then applied to remove the purely static 
objects from the scene and leave only the signals backscattered from 
the dynamic objects. A Capon beamformer [11] based on the 
steering vectors over a coarse two-dimensional (2D) azimuth-
elevation angular grid (with 8° inter-bin resolution, by default) is 
applied to generate the 3D range-azimuth-elevation spectrum 
matrix (i.e., heatmap). In covariance matrix estimation, instead of 
using all the received chirps per transceiver pair at each frame, only 
the selected bins in the Doppler spectrum of the corresponding 
frame are used (i.e., low-pass filtering) to enhance the detection 
performance for highly stationary occupants. In the Capon 
beamforming stage, coarse angle steps are used in the azimuth-
elevation grid to reduce the overall processing complexity and 
memory resources (which will be enhanced with an additional 
zoom-in stage, as discussed in the following paragraph). Note that 
to achieve a very fine velocity resolution with a limited number of 
chirps per frame (due to power consumption, frame rate, and 
regulatory requirements), multiple frames are aggregated in 
memory (four frames, by default) to be fed into the signal 
processing chain. 

 
Fig. 1. The low-level detection algorithm inputs the ADC data from the RF 
front-end and generates the point cloud for the high-level processing flow. 

A two-pass CFAR algorithm is then applied to the created 3D 
range-azimuth-elevation heatmap for detection. Before the CFAR 

detection, the generated 3D range-azimuth-elevation heatmap is 
first reshaped into a 2D range-angle heatmap with one dimension 
on the range and another dimension on the angle. The reshaped 2D 
range-angle heatmap is then processed by the first-pass range 
CFARs per angle bin to create the tentative detection points. A 
second-pass CFAR across the angle domain of the reshaped 2D 
range-angle heatmap then confirms the detection points created by 
the first-pass range CFARs. 

After the two-pass CFAR logic, the second-stage Capon 
beamforming algorithm based on the steering vectors over a finer 
2D azimuth-elevation angular grid around the detected coarse 
azimuth-elevation local peaks is applied to generate the zoomed-in 
2D azimuth-elevation angle spectrums (with a 5x zoom-in factor, 
by default). To generate a dense point cloud, the strongest peak of 
each zoomed-in spectrum and its neighbors that meet specific 
criteria are then extracted as the final detected points (with finer 
azimuth and elevation angles). Each measurement vector ultimately 
generated by the detection layer represents a reflection point with 
range, azimuth, and elevation. 

In an in-cabin occupancy sensing application, training a single 
model across all seats offers significant advantages in terms of 
simplicity and robustness. From a simplicity standpoint, employing 
a unified model streamlines the development and maintenance 
process by eliminating the need for multiple seat-specific models. 
In terms of robustness, a single model benefits from a broader and 
more diverse dataset, improving its ability to generalize across 
various seat positions and real-world scenarios. Thus, this 
uniformity not only simplifies the implementation but also enhances 
the overall consistency and reliability of the system’s performance. 
On the other hand, when utilizing a single model, it is essential to 
implement carefully handled pre-processing steps for each seat’s 
data to eliminate spatial domain biases. 

 
Fig. 2. The high-level decision algorithm inputs the point cloud and gives the 
final seat occupancy decision using the proposed feature extraction and 
classifier approaches. 

As summarized in the algorithm flow in Fig. 2, each point 
generated by the detection layer per frame is first converted to the 
world coordinates, depending on the sensor setup, and then assigned 
to each vehicle seat. We then apply an offset correction (i.e., 
normalization) step in the XY-domain to bring the point cloud data 
from different seats into a common reference frame. As shown in 
Fig. 3, this simple pre-processing step is important for the unified 
single model to learn generalized patterns and make accurate 
predictions regardless of the seat position. In the proposed 
algorithm, instead of using the raw point cloud, we also employ 
DBSCAN clustering logic [12] to reduce outliers and achieve more 
robustness. As shown in Fig. 3, such a filtering process with the 
DBSCAN clustering results in a more reliable and cleaner dataset 
for model training and inference. After tuning the DBSCAN 
algorithm based on a typical in-cabin scenario, according to the 
statistics generated from the dataset, 95% of the points detected 
from real targets survived, while 55% of noisy points were 
eliminated. 

In radar-based processing, observing the scene across time 
rather than relying on single-frame snapshots offers advantages for 
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accuracy and robustness due to radar's known limitations, especially 
in the spatial domain. Hence, as another pre-processing step, we 
combine the refined point cloud per seat in a circular buffer across 
time. Such a temporal aggregation allows for capturing dynamic 
changes in the scene, enhancing the model’s ability to discern 
between transient noise and persistent objects, hence leading to 
more stable and robust performance.  Utilizing the point cloud 
buffered across multiple frames, we generate feature vectors based 
on some statistics and provide these vectors to the classifier model. 
In the feature extraction step, seven features in total are extracted: 
(1) the mean of the number of points, (2)-(4) the root-mean-square 
(RMS) of the points in the XYZ-domain, and (5)-(7) the standard 
deviation of the points in the XYZ-domain. After experimenting 
with some other statistical features on the XYZ-domain, including 
mean, peak-to-peak, kurtosis, etc., we conclude that using RMS and 
standard deviation yields the most accurate results. 

 
Fig. 3. The DBSCAN algorithm clusters points from real objects while 
eliminating noisy reflections, and the offset correction approach normalizes 
data in the XY-domain, enabling a single model for all seats. 

Finally, a three-layer Artificial Neural Network (ANN, also 
known as Dense Neural Network) model, shown in Fig. 4, is run to 
decide occupancy utilizing the point-cloud-based features 
generated at each seat location. The model architecture comprises 
an initial layer with 20 nodes, followed by two hidden layers of 40 
and 80 nodes. Each of these layers employs the ReLU activation 
function. The network’s output layer is designed with a two-node 
softmax activation function tailored for binary classification. As 
shown in Fig. 4, at the final stage, we also apply a temporal 
smoothing logic for robustness and enhanced accuracy. 

 
Fig. 4. The three-layer ANN model trained for binary classification. 

Although we propose a binary classifier specifically trained to 
effectively distinguish between an empty and occupied seat to 
address the challenges associated with seat belt reminder systems, 
the versatility of our approach can be extended beyond this primary 
application. For example, the underlying methodology in the end-
to-end framework can be adapted to support child presence 
detection systems (child vs. adult classification, etc.) by retraining 
a new classifier model in the corresponding scenarios. Furthermore, 
our technique can also be extended to multi-class classification for 
advanced occupancy detection problems, enabling the system to 
differentiate between various other occupant types, such as adults, 
children, babies, and pets. 

III. REAL-TIME IMPLEMENTATION 
We implement the occupancy detection algorithm proposed in 

Section II on the TI’s latest high-performance and low-power 

mmWave sensor AWRL6844 [9], leveraging its advanced 
processing capabilities. The AWRL6844 mmWave sensor features 
three distinct processing cores: a hardware accelerator (HWA) 
running at 200MHz, a C66x digital signal processor (DSP) running 
at 450MHz, and an ARM R5F central processing unit (CPU) 
running at 200MHz. As illustrated in Fig. 5, the HWA is employed 
for range processing interleaved with the chirp acquisition period to 
create the 3D radar cube in the range-chirps-antenna domain. Once 
the radar cube is created and located in memory, the C66x DSP 
handles all the advanced signal processing blocks in the low-level 
detection layer in Fig. 1 to generate the point cloud. The point cloud 
is then passed to the ARM R5F core, which runs all the high-level 
decision logic in Fig. 2. 

 
Fig. 5. The task model of the implementation across three cores. 

Architecting the code to utilize these three independent cores 
optimally maximizes efficiency and performance, ensuring no cores 
remain idle. Such a distribution of tasks ensures that each core 
operates within its optimal performance domain, maximizing the 
overall throughput for efficient real-time implementation and 
achieving certain required frame rates. This implementation 
approach also demonstrates the potential of the AWRL6844 
mmWave sensor for sophisticated algorithms needed in occupancy 
detection applications. 

In the end-to-end processing chain, the low-level detection layer 
in Fig. 1 takes around 30-40 ms to process with the chirping 
parameters given in Section V, depending on the number of points 
generated for that particular frame (for around 100-300 points, 
respectively). The high-level decision layer in Fig. 2 takes around 
10-20 ms to process, similarly, depending on the number of points. 
Considering the 156 ms chirp acquisition time detailed in Section 
V, the end-to-end chain is optimized to run efficiently on 
AWRL6844 at a 5Hz frame rate, thanks to the optimized task model 
across processing cores, as illustrated in Fig. 5. 

The classifier model in Fig. 4 has a memory footprint of around 
17.5KB for its parameters and requires an additional 1.5KB of heap 
memory for internal computations. The feature extraction block in 
Fig. 2 requires around 94KB of memory to buffer point clouds 
across frames for five zones, storing up to 3200 total points per zone 
with compressed XYZ coordinates (2 bytes per coordinate) and an 
additional 12KB of heap memory for internal computations. On the 
other hand, the low-level detection layer in Fig. 1 needs 512KB of 
memory to store the radar cube (4 bytes per sample) with the 
chirping parameters given in Section V and around 284KB of heap 
memory for internal computations. In summary, the total memory 
footprint of the end-to-end chain is optimized to fit into the DSP L2 
RAM, R5F RAM, and L3 shared RAM of the AWRL6844 [9]. 

IV. A CUSTOM-BUILT TOOLSET FOR DEVELOPMENT 
It is well-known that the edge-AI-powered techniques, as 

proposed in this paper, are all data-driven and need massive data 
from various real-world scenarios for training to address potential 
corner cases in complex environments. However, capturing and 
labeling radar data presents unique challenges compared to camera 
images or videos. Radar data is inherently more abstract and lacks 
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visual cues, making it difficult to interpret and annotate. Hence, 
these challenges demand domain-specific expertise to identify and 
label objects accurately and necessitate specialized frameworks and 
tools to streamline and enhance the accuracy of data capturing and 
labeling for radar applications. 

To address these challenges, this paper utilizes an end-to-end 
MATLAB-based custom-built toolset that streamlines data 
acquisition, annotation, feature extraction, and model training for 
radar-based automotive in-cabin occupancy classification tasks. 
The developed framework, summarized in Fig. 6, first facilitates the 
efficient collection of high-quality radar point cloud data from the 
AWRL6844 mmWave sensor and ensures seamless annotation, 
feature extraction, and model training to support the entire 
classification workflow. To simplify the processes of data 
collection and annotation, we implement a filename-based labeling 
approach, where the label information is embedded within the 
filenames of captured data. This metadata is then automatically 
extracted during preprocessing, enabling efficient and automated 
annotation without the need for manual intervention. For the model 
training, the MATLAB deep learning toolbox is utilized. The 
classifier model is implemented as bare-metal C code. However, a 
model to header file generation framework is also developed to 
facilitate the automated maintenance of the learnable parameters. 

 
Fig. 6. The custom-built toolset developed in the MATLAB environment to 
support the end-to-end occupancy detection classifier workflow. 

V. DATASET AND EXPERIMENTAL RESULTS 
Diverse data collection from a wide range of scenarios is 

paramount in machine learning-based model training to ensure that 
the trained models can generalize effectively across various 
conditions, thereby improving their robustness and reliability. For 
this purpose, we created an extensive dataset on multiple car 
platforms by encompassing different driving environments, 
occupant postures, seat configurations, and external factors such as 
weather and road conditions. In this scope, we utilized the TI 
AWRL6844 radar evaluation module (EVM) [13] to capture data, 
ensuring a comprehensive dataset for developing and testing our 
solution. 

 
Fig. 7. The chirping scheme at a 5Hz frame rate to achieve optimal occupancy 
detection performance and meet FCC regulations. 

The chirping scheme in FMCW radar processing is pivotal in 
enhancing overall performance while satisfying the various other 
design metrics. While the resolution and accuracy of the detections 
are directly influenced by the characteristics of the FMCW chirp 
design (e.g., bandwidth, chirping duration, etc.), compliance with 
the existing regulations, such as those imposed by the Federal 
Communications Commission (FCC) [14], is also essential for 

maintaining the integrity of radar systems in real-world 
applications. In the data capture campaigns, we carefully consider 
all these aspects of the chirping scheme to achieve optimal 
performance and ensure that it adheres to such regulatory standards. 

The device is configured to transmit FMCW signals at a 57 GHz 
start frequency with a ramp slope of 97 MHz/µs. 128 ADC samples 
per chirp are configured with a sampling frequency of 4.4 Msps in 
real baseband. Therefore, a maximum range of 2.7 m is achieved 
with around 5 cm range resolution. As shown in Fig. 7, each 
transmit antenna is configured to transmit 12 consecutive chirps. 
These closely grouped chirps per transmit antenna are accumulated 
before the range processing to achieve good signal-to-noise ratio 
(SNR) performance while reducing the processing overhead in the 
low-level detection layer. After around 2.6 ms of idle time, this 
scheme is then repeated 32 times per frame. Therefore, at the end of 
each frame, a block of 32 chirps is created per transmit antenna. As 
mentioned in Section II, four frames are then concatenated to be 
used in the low-level detection layer processing in Fig. 1. The 
orthogonality between the transmit antennas is achieved by 
employing the time division multiplexing (TDM) technique. 

 
Fig. 8. The sensor mounting configuration to the overhead console. 

We designed and executed over 210 scenarios across different 
dates, representing various real-world situations (all in dynamic 
driving conditions). The data collection spanned three different car 
models (Mercedes E-350, Tesla Model-Y, and Acura-MDX), 
providing a diverse range of in-cabin environments and seat 
configurations. To enhance the generalizability of our solution, we 
involved more than 10 participants of varying sizes and postures, 
simulating a realistic spectrum of occupant behaviors. As illustrated 
in Fig. 8, the radar sensor was mounted near the overhead console 
with a 60° down-tilt angle, optimizing its field of view for effective 
in-cabin monitoring, utilizing a single radar sensor. For data 
augmentation to address class imbalance, we use random noise 
injection into the input features. 

TABLE I.  PERFORMANCE RESULTS OF THE PROPOSED ALGORITHM 

Scenario Precision Recall Accuracy F1-Score 
(a)1 99.29% 99.29% 99.28% 99.28% 
(b)1 97.95% 99.00% 98.74% 98.46% 
(c)1 97.57% 99.04% 98.69% 98.28% 
(d)2 92.80% 96.71% 96.06% 94.55% 
(e)2 95.71% 97.99% 97.66% 96.79% 
(f)2 95.64% 94.26% 95.09% 94.84% 

1Performance results of the models trained, validated, and tested 
using the data from the same car model: (a) Mercedes (M) data 
only, (b) Tesla (T) data only, (c) Acura (A) data only. 
2Performance results of the models trained and validated using two 
car models but tested with a separate car model: (d) Trained with 
(M) and (T), tested with (A), (e) Trained with (M) and (A), tested 
with (T), (f) Trained with (A) and (T), tested with (M). 

In the first set of results shown in TABLE I. (a)-(c), each car’s 
data is separated from the others to understand the accuracy of a 
per-car trained network. Each data set (from each car) is then split 
into 40% training, 10% validation, and 50% testing. Then, only the 
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test accuracies are summarized. Even though half of the data set is 
reserved for testing (unseen by the model), we achieved a >98% 
accuracy for each car. In the second set of results shown in TABLE 
I. (d)-(f), we applied a robustness test to check how the model is 
generalizable in unseen environments. In these tests, we separated 
each car data set, but now we use two of them in training and 
validation, and the other one in the test. Similarly, we only 
summarized the test accuracies. As shown in these results, even in 
an unseen car environment, we could achieve around 96% mean 
accuracy across each combination. 

In the results shown in Fig. 9, all the available data (from 
Mercedes, Tesla, and Acura) are merged and split into 40% training, 
10% validation, and 50% testing. Then, the test accuracies across 
different window sizes are shown for 2-layer and 3-layer ANN 
models. This result demonstrates that utilizing a longer observation 
window enhances the performance. However, this improvement 
comes with a tradeoff regarding increased decision latency, which 
should be carefully managed to balance real-time responsiveness 
with detection accuracy. Besides, the result in Fig. 9 shows that the 
3-layer ANN slightly outperformed the 2-layer counterpart (where 
the last hidden layer in Fig. 4 is removed). 

 
Fig. 9. The test accuracies of classifier models with different window sizes. 

Finally, in Fig. 10, various example scenarios tested with the 
real-time demo running on the TI AWRL6844 EVM are depicted. 
As shown in these snapshots, different seat occupancy scenarios are 
detected successfully. It is important to note that all the test cases 
shown in Fig. 10 are created in driving scenarios. Besides, to 
emphasize that the car environment in this test is new to the model 
and has never been seen in the training process. 

 
Fig. 10. The test results of the real-time chain (on the AWRL6844) in different 
driving scenarios (in new environments that are not used in model training). 

VI. CONCLUSIONS 
In this paper, we proposed a mmWave radar-based reliable 

automotive in-cabin occupancy detection solution that combines 
signal processing and machine learning techniques. Implementing 
a three-layer ANN model fed by hand-crafted features from 
advanced signal processing blocks offered reduced complexity and 
resulted in accurate and reliable occupancy detection across various 
real-world scenarios. We demonstrated the advantages of training a 
single, unified model for all seats with proper spatial-domain 
normalization steps, highlighting the benefits in terms of simplicity 
and robustness. The integration of temporal data aggregation to 
capture dynamic changes in the scene and DBSCAN clustering-
based cleaning techniques to effectively mitigate the noise in the 
data further enhanced the overall system accuracy and robustness. 
This paper also presented the details of the proposed chain's real-
time implementation on the TI AWRL6844 mmWave sensor, 
leveraging its three processing cores to achieve an efficient real-
time performance. Additionally, we introduced our dataset, which 
comprises numerous real-world scenarios, and presented a custom-
built classifier framework supporting the entire classification 
workflow. The proposed method in this paper also sets the stage for 
our future innovations in radar-based automotive in-cabin 
occupancy detection solutions. 
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