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Abstract—A model for bistatic radar waveforms with an
arbitrary long coherent processing interval (CPI) is presented.
The model describes the received waveform in the time domain
accounting for the varying propagation delay due to the bistatic
range variation during the CPI. The model represents the
received waveform, accounting for relative constant velocity
motion between radar platforms and target. Traditional methods
often simplify this effect, leading to performance losses that can
become severe for long CPI. The proposed model supports ar-
bitrary transmitted waveforms including continuous wave (CW)
operation, long CPIs, and varying positions and velocities of the
transmitter, receiver, and target. It also extends to multichannel
receivers. The developed model can readily be used in simulations
to quantify the performance loss when evaluating suboptimal
detectors based on simplifying model assumption. Simulations
demonstrate the use of the model to highlight the impact of
target velocity and CPI length on the performance when using
the classical approximate Kronecker structure (space, fast-time,
slow-time) processing model. The introduced model pave the way
for future research on developing fast and accurate processing
schemes for different multichannel radar systems utilising long
CPL

Index Terms—bistatic radar, radar detection, coherent detec-
tion, array signal processing

I. INTRODUCTION

In coherent radar processing, the received waveform shape
is fully utilized to maximize the signal to noise ratio (SNR)
in a detector [1]. The processing time interval is then called a
coherent processing interval (CPI). To achieve full coherence
during the CPI, the processing needs an accurate model of the
received pulse shape. For a scenario when there is a relative
velocity between the radar platform and the target, the received
waveform is stretched or compressed in time, an effect that
can be described with a non-linear propagation delay func-
tion. However, if the CPI is short enough, the waveform is
repetitive or with a sufficiently small pulse bandwidth, the
processing can be split into handle range and relative velocity
separately. Classical pulse Doppler radar processing is based
on this simplification. The stretch and compression effect has
been studied and analysed in many radar signal processing
publications. One of the absolute first references is the seminal
analysis in reference [2]. The reference describes the constraint
that the target range walk and Doppler walk (related to
stretch and compression effect) needs to be smaller than the
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corresponding resolutions in range and Doppler. The range
constraint may be written as that the time-bandwidth product
needs to be smaller than the wave propagation speed divided
by twice the target radial velocity. The Doppler constraint may
be written as that the integration time needs to be smaller
than the radar wavelength divided by twice the target Doppler
variation. Since this reference, there is a multitude of analyses
and processing methods for different monostatic radar settings.
For example, processing for moving targets with substantial
range and Doppler walk in very long CPIs has attracted much
attention, see e.g. references [3]-[10]. Of special interest is the
introduction of the Keystone processing method in reference
[9] which mitigates large linear range walk (targets with radial
velocities). There is a vast body of publications on variations
of the Keystone processing method. Targets that also have a
tangential velocity will experience a Doppler walk, and there
are a few methods that mitigate such effects, see e.g. [11]-
[16] For a passive, or a noise, radar, the problem has also
attracted interest. See e.g. description in references [17], [18].
and a few cases where Keystone processing have also been
used [19]-[22]. The bulk of methods referred to above all
introduce a ‘fast-time’ and ‘slow-time’ re-structuring of the
received data. In a multichannel receiver, a target’s angular
walk also needs to be considered and utilized. For a sufficiently
short CPI or small target velocities, the target direction vector
can be assumed constant and processing in angle domain can
be performed independent of range and velocity processing.
However, as the classical range, angle and velocity processing
is based on a simplified waveform model it will yield a loss
in performance as compared to the optimal performance. The
effect becomes more pronounced, and potentially severe, when
above target walk criteria is not met for the CPL

To enable an objective quantification of how various simpli-
fying assumptions impact the overall performance of a given
method, a model, free from these assumptions is needed. In
this contribution, we introduce a bistatic model for the shape
of the received multichannel waveform that is valid for an
arbitrary transmitted waveform, an arbitrarily long coherent
processing interval (CPI), and arbitrary positions and velocities
of the transmitter platform, receiver platform, and target. We
assume that the velocity vectors remain constant during the
CPIL. The model further assumes that the complex-valued radar
cross section (RCS) of the target remains constant during
the CPI (i.e., the target is coherent). While this assumption
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does not hold for arbitrarily long CPIs, it is not further
addressed in this paper. An arbitrary waveform with a 100
% transmit duty factor is of interest for both digital radar in
general and bistatic radar in particular. In related work [23]
the single channel bistatic-ambiguity function is introduced,
approximated and analyzed. We also note a recent contribution
[24], which includes related analyses for a space-air bistatic
radar setup and does not transform time into ‘fast’ and ‘slow’
dimensions, although it introduces some approximations in
time and geometric relations.

A. Notation

Vectors (matrices) are denoted in lower (upper) case bold
font. For a real (complex) vector x the transpose (Hermitian
transpose) is denoted by T (z*). The Euclidean vector norm
is ||z|| = V&*z, the Frobenius norm is || X || = /tr(X*X)
and vec X is the vectorization operator [25].

II. THE WAVEFORM MODEL

The objective of this section is to give a description of the
waveform received at the antenna in the receiving platform
(Rx) that is the result of the transmitter (Tx) illumination
of a target in space. We assume the target have a constant
complex-valued radar cross section. The waveform that arrive
at the receiver side of the radar system is hence a scaled and
time delayed version of the transmitted waveform. During the
CPI we allow the transmitter, receiver and target to move
according to their individual constant velocity vectors This
implies that the bistatic distance, i.e. the sum of the distance
between Tx and target and target and Rx, will vary during
the CPI and results in a variation of the wave propagation
delay. This propagation delay variation will directly dictate
the shape of the received waveform [23]. Without loss of
generality we place the origin of the coordinate system at the
Tx platform and all positions and velocities will be relative
to the Tx platform. We derive the model with the assumption
that the relative speed between Tx and Rx platforms is low
compared to the EM wave propagation speed and we disregard
the Lorentz factor that otherwise would need to be taken into
account.

A. The propagation delay

The transmitter antenna emits a waveform that propagate
in space. A target, modeled as a point scatterer, with location
ps(t) reflects the waveform and is received by an antenna
located at pgy(t). With the constant velocity assumption we
have the evolvement over time described as

pr(t) = PRx,0 + vrx?
ps(t) = pso + vst
where prxo and pso are the receiver and target positions at
t = 0 and vrx and vg are the velocity vectors respectively. The
instantaneous waveform sent out at time ¢ will arrive after a
delay of 7rs(t) to the target. Hence
mrs(t)e = |lps(t + m1s()]| = ||pso + vs(t + s ()| (2)
where c is the wave propagation speed. Taking squares on both
sides in (2) results in

Tis(t)e® = ris(t) + 2qus (t)7rs (t) + s ris (1) 3)

6]

where
rrs(t) = [ps(t)|| = [|pso + vst|| “4)

is the distance when the waveform leave the transmitter and
grs(t) is defined as

qrs(t) £ ps (t)vs = Psvs + [vs||*t o)
Here ¢1s/7rs is the radial velocity of the target at time ¢, i.e.
the velocity vector of the target projected onto the direction
vector from Tx to target. The positive solution to (3) is

Trs(t) = qrs(t) + \/Q%(sc(;)_-&-"(vcjnz_) [os[2)r2s(t) ©

At time ¢t 4 7rs(t) the target will scatter the instantaneous
waveform and the receiving antenna will sense the waveform
at time t+7rs(t)+7sr (t) where Tsgr (%) is the wave propagation
time from the target to the receiver (originating from the wave-
form sent by the transmitter at time ¢). With the definitions

rsr(t) 2 ||Prxo — Ps.o + (Vrx — vs)(t + 7rs (1)) || (N
as the distance and
gsr(t) = (Prxo — P50 + (Vrx — s)(t + 71s(t))) vrx  (8)

the propagation time is given by

2 c2 — URrx 2 T2R
TSR(t) _ QSR(t) + \/qSE{C(;)_i,(URXP) || ) S (t) (9)

Consequently, the waveform that was transmitted at time ¢ will
be received at time ¢ + 715 (¢) + 7sr () and we define the total
delay (propagation time) as

T(t) = TTS(t) + TSR(t).

We note that the mapping from positions and velocities to
the delay function 7(¢) is not invertible as there exists several
symmetries in the geometry.

(10)

B. The received waveform

We assume the transmitter antenna emits an electromagnetic
signal a1y (t) that is the real part of a complex baseband
waveform s(t) modulated by a complex exponential with
carrier frequency f. that is expressed as

orx(t) 2 R(s(t) exp(§27 f.t)). (11)

The waveform transmitted at time ¢ is received at time ¢+ 7(¢).
The receiver is assumed to coherently process the signal to
baseband by (ideal) mixing and filtering. The complex base-
band signal prior to sampling from a specific target associated
with the delay 7(t) is given by

TRl + (1)) £ as(t) exp(—j2m for (1))

where « represents the propagation losses and the complex
valued radar cross-section of the target. Consider the time
warping function ¢(¢) with domain ¢ € (0, c0) and co-domain
t' € (7(0), 00) defined by

t'=Ct) Et+7(t)

Due to wave propagation properties ((-) is a monotonically
increasing function and there exists an inverse ¢t = (~1(t').

12)

13)
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With (13), the received baseband signal (12) can be expressed
as

arx(t') = as(¢TH(t')) exp(—j2n for(¢TH(H)))

The phase contribution at the receiver due to the carrier is
after down mixing given by —27 f.7((71(t')).

(14)

C. Multichannel receiver

The receiver channel model in (14) can be extended to
a multichannel receiver with N Rx channels. The received
baseband signal at channel number 7 is then given by

TRx,n (t/) = as(g;l (t/)) eXp(_jQﬂ-chn (C;l (t/)))

where (,,(t) £ t+7,(t) and 7, (t) is the channel specific delay
function from Tx to Rx antenna channel n (via the target).
With a far-field assumption, i.e. the total antenna aperture is
much shorter than the distance to the target combined with
the natural assumption that all antenna element positions on
the Rx platform share the same velocity vector, the expression
in (15) can be simplified. Let the relative position of the Rx
antenna element n, in relation to the nominal Rx platform
position be denoted by prx,. The relative position of the
receiver antenna will add a time delay to each received channel
compared with the nominal position that depends on the
direction of incidence. If we also assume that the bandwidth
B of the baseband signal satisfy max,, ||prxa| < ¢/B then
s(¢Ht)) ~ s(¢CTH(t')) and together with the far-field as-
sumption we obtain

Tren(t') & aa, (CHE))s(CH(E)) exp(—j2m for(CTH(H)))

(16)
where ((-), defined in (13), is the time warping function for
the reference position at the Rx platform and the individual
delays between the elements results in Rx phase factors given
by

15)

2
an(t) £ exp(j le{xs(t)pr,n)
where dgys(t) is the unit norm direction vector pointing from
the Rx reference position to the target

a ps(t + 7rs(t)) — Pry,o(t + 7(1))
|ps(t + Trs(t)) — Prx,o(t + 7(1))]|

and A = ¢/ f. is the wave length. We note in particular that the
direction vector in (18) is time varying to correctly capture the
phase variation when the angle to the target is varying during
the CPL

a7

drys(t) (18)

D. The sampled signal

Let Tcp denote the processing interval and f; the baseband
sampling frequency and we assume Tcpfs is integer valued.
The signal samples can be arranged into a 2D array of size
Topfs x N with elements

Z(k,n) 2 aren(k/ f5)

where k is the time index and n is the channel number. The
vectorization of Z/« can be regarded as the steering vector
for a given scenario and would be the optimal vector to use in
a linear detector if the noise and disturbances would be white.

19)

TABLE I
RADAR PARAMETER VALUES FOR THE 3 SCENARIOS.
Carrier frequency fc 300 MHz
Pulse rep. int. Tpr 0.1 ms
Pulse bandwidth B 10 MHz

Pulse duty cycle n 0.1
Rx sampling freq. fs 10 MHz

ULA geometry pyra %[1, 0,0]7 m

III. EXAMPLE

In this section we explore the use of pulsed waveforms in
some bistatic scenarios and see how well the classical model
for a multichannel pulse Doppler radar agree with the more
correct general waveform model derived in Section II.

A. Pulsed waveforms

Here we introduce the family of pulsed waveforms and
the classical approximations that enables fast sequential pro-
cessing for target detection. A finite waveform s(t) that for
0 <t < Plpr satisfies

S(t) = 0, ’I]TPR <t<Tpr
S(t + TPR) = S(t)

is a periodic and pulsed waveform where Tpg is the pulse
repetition interval, 0 < n < 1 is the pulse duty cycle and P
is the number of pulses. In this case Tcp = Tpr P.

(20)

B. The range-Doppler-angle approximation

When the transmitted waveform is a train of pulses (as in
(20) the associated steering vector can be approximated in a
way that enables fast and sequential processing. In this section
we review the classical range-Doppler-angle approximation of
the steering vector where we assume the receiver platform
is equipped with a linear uniformly spaced antenna array
(ULA) [1]. At the Rx side we sample each antenna channel
with sampling frequency fs and arrange the samples into a
3D array of size M x P x N, where M = Tprf, is the
number of samples per period and is assumed to be an integer.
The approximation is based on the (incorrect) assumption
that the bistatic range, Doppler and angle is the same for all
pulses during the CPL. In this work we use the values at time
t' = Tcp/2 with range

r=|pso + vst'|| + |Pso — Prexo + (Vs — vro)|| (21)
Doppler frequency
T;
o= %(UsTdes + (vs — Vry) " dRrys) (22)
and angle frequency
1
fa= 1Pliadrss (23)

where drxs and dgys are the unit norm direction vectors that
point from Tx to target and Rx to target respectively and p{; ,
is a vector from the first to second antenna element in the
ULA. Based on this mid point in the CPI an approximation
of the received data is

Y (m,p,n) = s(mfs —r/c)exp(j2n fop + j27 fan). (24)
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The vectorization of Y will be an approximate steering vector
that also can be described as the Kronecker products between
the time shifted pulse (range/fast-time) and two Vandermonde
vectors for the Doppler (slow-time) and angle (space) re-
sponses respectively. It is clear that this approximation will be
less accurate when the CPI increases or if the relative velocities
increases. The numerical examples that follow will illustrate
this effect.

C. Correlation as performance metric

We evaluate the performance by the magnitude of the
correlation between the vectorized matrices defined as
| vec(Z)* vec(Y)|

1Z el Y [|r

C(vec Z,vecY) = (25)
The quantity C' measure the matching between the steering
vectors and take values from O to 1 where 1 means an ideal
match i.e. the vectors vec(Y') and vec(Z) are parallel. The
quantity C'(a, b) is also known as the cosine of the Hermitian
angle between the complex vectors a and b [26].

D. Simulation setup

The radar parameters used in the simulation is given in
Table I. We simulate three scenarios where the Tx platform is
fixed at the origin of the coordinate system and the Rx platform
is located at pryo = [6,0,0]7 km and stationary. The target
initial position is ps = [6,0.1,0]7 km that is in the broadside
direction w.r.t. the ULA in the receiver. The three scenarios
are defined as:

ST wvs=v[0,1,0]7 m/s, and N = 2.
S2  ws=v[1,0,0]7 m/s, and N = 2.
S3  ws =v[1,0,0]T m/s, and N = 100.

In S1 the target moves away from Rx on the radial and
the angle stay constant. For S2 and S3 the target moves
perpendicular to the radial and the angle variation rate
is maximal at ¢ = 0. For each scenario, Tcp in the
set {1,3,10,30,100,300} ms and velocity v in the set
{30, 60, 100, 200,300, 600, 1000, 2000} the correlation C' is
calculated. Figures 1, 2 and 3 present the results. For all
scenarios the correlation decreases with an increasing 7Tcp as
well as with an increased target velocity. To obtain a further
understanding of what causes the de-correlation we analyse the
variations in the bistatic range, the range rate and the angle
during the CPIL. Let Ar, A fp, and Af, denote the difference
between the maximum and minimum values of the bistatic
range, doppler frequency and angle frequency during the CPI.
We normalize these quantities with the classical notion of the
resolution respectively in a similar fashion as done in [19].
The normalized quantities are defined as

ATnorm = H = ﬂ ~ viceB
res ¢/B c
AfD,norm é AfD _ AfD ~ 2'UTCP
fD,res 1/P A
Afanorm A Afa _ Afe\ — pELAAdeSN _ dgLAAdeSN
' fa,res I/N A

(26)

TABLE II
NORMALIZED RANGE, DOPPLER AND ANGLE VARIATION OVER THE CPI
AND THE CORRELATION FOR SOME SPECIFIC CASES. IN THE FIGURES A
BLACK HEXAGRAM INDICATES THE CASE.

Scenario S1 S2 S3
v [m/s] 200 100 200
Tcp [ms] 100 100 3
ATnorm 0.68 0.35 0.02
A fD norm 0.07 1.00 | 0.003
A fanorm 0 010 030
Correlation C' 0.934 | 0954 | 0.952

Correlation [-]

Target velocity [m/s]

Fig. 1. Correlation as a function of target speed and different CPI. Scenario
S1. The hexagram marks the case reported in Table II

where Adgrys is the variation in the direction vector from
Rx to target and dypa £ %pULA. For a given Tcp and
target velocity v we note that Ary,,, is proportional to the
bandwidth, A fp sorm is proportional to 1/ (or proportional to
fe) and Af, horm 1s proportional to NV, the number of antenna
channels in Rx. If any of the three relative quantities in (26)
approach 1 the correlation between Z and Y starts to decrease.
This effect is related to the Kronecker structure of vec(Y'). In
Table II for each scenario we present the normalized variation
for a select velocity and CPI pair. It is clear that S1 is limited
by the range variation, S2 by the Doppler variation and S3
by the angle variation. The specific velocity and CPI pair is
marked with a black hexagram in the figures.

IV. CONCLUSIONS

A waveform model has been developed that allows arbitrary,
non-repetitive waveforms and a 100% transmit duty factor
(CW operation). Arbitrary and non-repetitive waveforms are
capabilities afforded by a digital radar and CW operation is
of large interest for bistatic operations. As such, the model is
formulated in time with no split into ‘fast’ and ‘slow’ time
and thus allows also to analyze performance loss of sub-
optimal processing methods. Three bistatic radar examples
are analysed using an approximate Kronecker structure (space,
fast-time, slow-time) for the received waveform. The described
guidelines can be exploited to demonstrate cases where the
loss in such Kronecker structure based processing (sequential
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TCP=1 0Oms
—¥—Tp=30ms
~5-T;=100ms
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Target velocity [m/s]

Fig. 2. Correlation as a function of target speed and different CPI. Scenario
S2. The hexagram marks the case reported in Table II

Scenario S3

06

—8-Tgp=1ms
-7 Tgp=3ms

Correlation [-]
°
13

Tep=10ms
02| —¥=Tgp=30ms
~5-Tp=100ms
Tp=300 ms |
0 1 -~ 'r}éﬁ
102 10°
Target velocity [m/s]

Fig. 3. Correlation as a function of target speed and different CPI. Scenario
S3. The hexagram marks the case reported in Table II

processing) becomes non-negligible. Future work will be fo-
cused on new ways to find approximate and fast processing
schemes for bistatic radar with arbitrary waveforms. The link
to the classic ambiguity function and relation to earlier work

for

Keystone and similar methods and their application in

bistatic radar systems will be thoroughly analysed.
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