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Abstract—This paper considers the problem of jointly estimat-
ing target locations and reconstructing building layouts in non-
line-of-sight (NLOS) scenarios. The proposed method employs
Range-Doppler (RD) features for multipath separation to extract
time of arrival (TOA) information, followed by the Iterative
Adaptive Approach (IAA) to determine the direction of arrival
(DOA) and estimate multipath ghost positions. By utilizing the
spatial correlation between multipath ghosts and building layout,
the algorithm determines the optimal candidate target locations
and wall parameters through spatial matching. The feasibility of
NLOS target precise localization and building layout estimation
is demonstrated by Electromagnetic (EM) simulations results.

Index Terms—NLOS target detection, Building layout estima-
tion, Multipath ghost correlation, Space matching

I. INTRODUCTION

Recently, non-line-of-sight (NLOS) sensing technology,
which extends the detection range and enables the detection
of hidden targets, has become essential in fields such as
counterterrorism and autonomous driving, attracting signifi-
cant attention. [1]–[3].

Hindered by obstructions, traditional line-of-sight (LOS)
methods fail to detect targets effectively. In contrast, NLOS
sensing technology leverages electromagnetic (EM) wave
properties and multipath propagation to detect targets. A track-
before-detect (TBD) method introduced in [4] addresses the
challenge of detecting NLOS targets but lacks high localization
accuracy. To achieve more accurate localization performance,
several NLOS target localization methods inspired by tech-
niques used in indoor multipath ghost suppression have been
proposed. An imaging dictionary fusion algorithm was pro-
posed in [5], utilizing NLOS sub-images generated from each
propagation path and integrating them through a multiplicative
fusion process to accurately locate multiple targets. Addi-
tionally, a grid-matching-based NLOS localization approach
proposed in [6] computes the time of arrivals (TOAs) for each
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grid based on the multipath propagation model and selects
the grid that best matches the arrival time of the round-trip
multipath echo measurement, thereby improving the accuracy
of NLOS target localization.

However, the performance of the aforementioned methods
heavily relies on prior knowledge of the building layout. In the
absence of such knowledge, their accuracy significantly deteri-
orates or even fails entirely. To overcome this limitation, Chen
et al. [7] proposed a sparse-driven joint estimation method that
integrates the morphological reshaping group sparse constraint
(SR-GSC) algorithm with the particle swarm optimization
(PSO) method to simultaneously reconstruct unknown building
layouts and target locations. Furthermore, Xue et al. [8]
proposed an elliptic envelope approximation (EEA) algorithm
for the localization of the NLOS target and the reconstruction
of the building layout in complex geometric environments.
This method addresses the limitations of high scene regularity
and the lack of a multipath complementary mechanism in
existing approaches. However, it is restricted to the localization
of a single target. Moreover, these methods still assume the
LOS wall parameters are known, making them ineffective
when this information is unavailable. Consequently, to ensure
robust performance in practical scenarios, it is essential to
simultaneously estimate the positions and angles of both LOS
and NLOS walls.

In this paper, we propose a novel algorithm that leverages
the spatial correlation among different multipath ghosts to
jointly estimate the target location and reconstruct the build-
ing layout, including both NLOS and LOS walls. Initially,
the method separates multipaths using Range-Doppler (RD)
topological features to determine the TOA for each path. Sub-
sequently, the iterative adaptive approach (IAA) is employed
to extract the direction of arrival (DOA) for these multipaths,
facilitating the estimation of multipath ghost positions. Fur-
thermore, by exploiting the geometric relationship between
multipath ghosts and the building layout, the algorithm it-
eratively refines candidate target locations and updates wall
parameters through spatial matching until an optimal solution
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satisfying spatial constraints is found. Finally, EM simulations
validate the effectiveness of the proposed method.

II. MULTIPATH PROPAGATION MODEL

Consider an NLOS scenario consisting of three walls, as
illustrated in Fig. 1. Surface-1 and Surface-2 form an angle
denoted as θ1, while Surface-3 forms an angle θ2 with the
x-axis. The Multiple-Input Multiple-Output (MIMO) radar
system comprises M transmitters and N receivers, positioned
near Surface-1 to detect the concealed targets. Thus, the echo
of the k-th frame ykmn(t) received by the n-th receiving
antenna, after being reflected and diffracted from the signal
s(t) transmitted by the m-th transmitting antenna, can be
expressed as

ykmn(t) =
∑
p,q

σi,k
m,pσ

i,k
n,qaT (θ

i
m,p)aR(θ

i
n,q)

× s(t− τ i,km,p − τ i,kn,q) + ξk(t) + ηk(t),

i = 1, 2, . . . , I, k = 1, 2, . . . ,K,

(1)

where p represents the transmitting path, q represents the
receiving path, σi is the attenuation factor of the i-th target,
and τ is the propagation time delay. The corresponding values
aT (θ

i
m) and aR(θ

i
n) of the transmitting and receiving antennas

in the steering vectors are expressed as

aT (θ
i
m) = ej

2πdT sin(θim)

λ (m−1),

aR(θ
i
n) = ej

2πdR sin(θin)

λ (n−1),

(2)

where dT represents the interval between adjacent transmitting
antennas, and dR represents the interval between adjacent
receiving antennas. θim and θin denote the angle of departure
and arrival, respectively. ξ(t) denotes the signal that combines
the direct path and the reflection path from obstacles such as
walls. η(t) accounts for the ambient noise.

Without loss of generality, we assume that there is a single
target located at (xt, yt) in the NLOS region, denoted by Q.
Considering propagation losses, EM waves reach the target
through diffraction path, first-order reflection path, second-
order reflection path and their combined paths as depicted
in Fig. 1. The virtual target positions corresponding to these
multipaths are denoted as Q00 - Q22. Specifically, the position
of the equivalent virtual target Q00, associated with the
diffraction path, is given by

Q00 = [x0, y0]
T
=

{
(x− xc)

2 + (y − yc)
2 = ∥CQ∥22

}
,
(3)

where (xc, yc) is the position of corner C, and ∥CQ∥2 is the
distance from the target to the corner, ∥·∥2 represent is the ℓ2-
norm. For the reflection path, the position of the virtual target
is related to the position and angle of Surface-2 and Surface-3.
The Householder transformation is introduced to determine the
mirror position. Before that, the surface is defined by the linear
equation x cos θh − y sin θh + dh = 0, where θh is the angle
between Surface-h and the positive direction of the x-axis, and
d is the perpendicular distance from the origin to Surface-
h, h ∈ {2, 3}. Thus, the linear equation is converted into
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Fig. 1. Multipath propagation in a NLOS scenario

aT
hx = 0, where ah = [ah, dh]

T , ah = [cos θh,− sin θh]
T ,

x = [x, y, 1]
T , and T is the transpose operator. Consequently,,

the virtual position of the target with respect to Surface-h,
relative to the Householder matrix Ph, can be determined by

x′ = Phx− 2dh, (4)

where

Ph = I− 2
aha

T
h

∥ah∥2
, (5)

with I,x,x′, respectively, the identity matrix, the actual po-
sition and mirror position with respect to Surface-h. Based
on the Householder transformation, the virtual positions with
respect to the multiple reflection paths can be determined by{

Q11 = [x1, y1]
T
= P3Q− 2d3

Q22 = [x2, y2]
T
= P3 (P2Q− 2d2)− 2d3.

(6)

Based on the positions of the virtual targets, the single-trip
time delay τm,p along the p-th path for the m-th transmitter
and τn,q along the q-th path for the n-th receiver can be
calculated as follows

τm,p =

{
(∥TmC∥+ ∥CQ∥)/c, p = 0,
∥TmQpp∥/c, p = 1, 2,

(7)

τn,q =

{
(∥RnC∥+ ∥CQ∥)/c, q = 0,
∥RnQqq∥/c, q = 1, 2,

(8)

where c is the speed of light, Tm and Rn are the position
of the m-th transmitter and the n-th receiver, respectively.
Therefore, the corresponding round-trip time delay is given
by

τ = τm,p + τn,q p, q ∈ {0, 1, 2}. (9)

Based on the multipath model, a joint estimation algorithm
of building layout and target will be proposed in Section III.
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III. JOINT ESTIMATION ALGORITHM OF BULIDING
LAYOUT AND NLOS TARGET

This section introduces the proposed algorithm for joint esti-
mation of building layout and NLOS targets, enabling building
layout reconstruction with fewer constraints. The method
comprises three main steps: multipath recognition based multi-
domain features, multipath ghost position extraction, followed
by building layout and target positions estimation.

A. Multipath Recognition Based on Range-Doppler Features

By leveraging the topological relationships in the RD spec-
trum, the recognition strategy described in [9] can identify six
types of paths including diffraction paths, first-order reflec-
tion paths, second-order reflection paths, and their respective
combination paths. This paper employs this method to achieve
multipath recognition. These paths, denoted as P00, P10, P11,
P12, P02, and P22, form a triangular structure in the RD map,
which is clearly illustrated in Fig. 3(a). Among them, the three
round-trip paths are located at the vertices of the triangle,
while their combined paths are positioned at the midpoints
of the three edges. The recognition results of the K frames
are stored in the path utilization vector, and the path utilization
vector for the i-th target is represented as

Gi
u =


d1,i00 d1,i11 d1,i22

d2,i00 d2,i11 d2,i22
...

...
...

dK,i
00 dK,i

11 dK,i
22

 , i = 1, 2, ..., I, (10)

where dk,i00 , d
k,i
11 , d

k,i
22 represent the distance information of

the diffraction path, first-order multipath, and second-order
multipath detected in the k-th frame for the i-th target,
respectively. Based on the identified multipath components,
the corresponding ghost positions can be inferred.

B. Multipath Ghost Position Extraction

The path identification results based on the RD spectrum
include only the distance and Doppler information of the
corresponding paths. To extract the exact locations of the
multipath ghost targets, the corresponding angle information
is also required. In this paper, the iterative adaptive approach
(IAA) in [10] is implemented to obtain angle information.
Applying the IAA method to each extracted path provides
the corresponding angle information, which is then integrated
into the angle matrix J. The angle matrix for the i-th target is
represented as

Ji
u =


θ1,i00 θ1,i11 θ1,i22

θ2,i00 θ2,i11 θ2,i22
...

...
...

θK,i
00 θK,i

11 θK,i
22

 , i = 1, 2, ..., I, (11)

where θk,i denotes the angles of the different paths in the k-th
frame.

After obtaining the distance and angle of different multipath
ghosts, the exact location of the multipath ghosts can be
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Fig. 2. Spatial correlation among multipath ghosts, candidate target and
candidate walls

confirmed. It should be noted that EM waves turn at corners
during diffraction, so it is not possible to determine the
position of diffracted ghosts by the angle of arrival of the
diffraction path. Therefore, only first-order and second-order
ghosts are considered in this section, which can be expressed
as{

Qk,i
11 = [x1, y1]

T
= [dk,i11 cos θk,i11 + xR, d

k,i
11 sin θk,i11 + yR]

T

Qk,i
22 = [x2, y2]

T
= [dk,i22 cos θk,i22 + xR, d

k,i
22 sin θk,i22 + yR]

T ,
(12)

where (xR, yR) is the position of radar antenna array center.
Qk,i

11 ,Q
k,i
22 denote the estimated first-order ghost and second-

order ghost positions of the i-th target in the k-th frame,
respectively.

C. Building Layout and Target Parameters Estimation

As discussed in Section II, the positions of multipath
ghosts are determined by both the building layout and the
target position. Therefore, its spatial correlation feature, which
describes the symmetric relationships among ghosts, targets,
and walls as shown in Fig. 2, can be leveraged to determine
the optimal target location and building layout parameters that
satisfy the wall corner constraint.

The corner C can be estimated by the method in [11]. Based
on the distance of the diffraction path and the position of the
wall corner, it can be determined that the target is located
on a circular arc centered on the wall corner. Set the angle
search interval as θ = [θ1, ..., θH ]

T , each angle corresponds to
a candidate target position, denoted as

Qcan = [xcan, ycan]
T
= [dCQ cos θh + xC , dCQ sin θh + yC ]

T
,

(13)
where dCQ is the diffraction path length minus the distance
from the radar to the corner of the wall, [xC , yC ] is the position
coordinates of the corner of the wall, and θ is all possible
angles of the target. By traversing all angles, all candidate
targets can be obtained.

For each candidate target, the specific parameters of the
corresponding candidate wall can be determined by solving
an inverse problem that incorporates the positions of the first-
order and second-order ghost targets. Based on the spatial
correlation between the candidate target and the first-order
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Fig. 3. Simulation results of a single target moving along a straight route. (a) RD Map, (b)Target localization result, NLOS wall and LOS wall estimation
result obtained by using the proposed algorithm, and (c) Target localization results obtained by using GMM.

ghost, the candidate LOS wall surface, Surface-3, corresponds
to the perpendicular bisector of the line segment connecting
points Q11 and Qcan. The slope of this bisector wLOS is given
by

wLOS = −xcan − x11

ycan − y11
, (14)

and it passes through the midpoint

(
xcan + x11

2
,
ycan + y11

2
). (15)

After determining the linear equation of the candidate LOS
wall, from the spatial correlation between the candidate LOS
wall and the second-order ghost, the symmetry point of the
candidate target with respect to the candidate NLOS wall can
be found as

Q
′

22 =
[
x

′

22, y
′

22

]T
, (16)

where Q
′

22 needs to satisfy the following constraints

wLOS = −x′
22 − x22

y′22 − y22
=

(ycan + y11)− (y22 + y′22)

(xcan + x11)− (x22 + x′
22)

.

(17)
Similarly, the candidate NLOS wall corresponds to the

perpendicular bisector of the line segment connecting Q
′

22 and
Qcan. The slope of this bisector is given by

wNLOS = −xcan − x′
22

ycan − y′22
, (18)

and it passes through the midpoint

(
xcan + x′

22

2
,
ycan + y′22

2
). (19)

Since the wall corner position must lie on the NLOS wall, a
wall corner position constraint can be introduced as a decision
criterion. Specifically, by traversing all candidate NLOS walls,
if the wall corner lies on a candidate NLOS wall, spatial
location matching is considered successful. In this case, the
candidate NLOS wall is identified as the actual NLOS wall,
the candidate LOS wall is regarded as the actual LOS wall,
and the candidate target location is recognized as the actual
target position. This process simultaneously achieves NLOS
target localization and building layout reconstruction.

IV. SIMULATION RESULTS

This section presents the EM simulation results based on
the EM simulation software gprmax [12] using the Finite Dif-
ference Time Domain (FDTD) method to verify the feasibility
of the proposed algorithm. The corner scenario is depicted in
Fig. 1. The simulation scenario is an 8m × 8m area, where
the corner is positioned at (1.00 m, 1.00 m), and Surface 3
intersects the x-axis at x = 5m. Surface-1 and Surface-2 form
an angle denoted as θ1 = 80◦, while Surface-3 makes an angle
θ2 = 80◦ with the x-axis. To detect the targets, a MIMO
array with two transmitters and four receivers is employed.
The transmitters are positioned at (1.00 m, 1.00 m) and (1.00
m, 1.20 m), while the receivers are placed at equal intervals
of 0.05 m. A step-frequency signal with a center frequency of
fc = 3 GHz and a bandwidth of B = 1 GHz is used as the
transmitting signal. A total of 50 frames of data are generated
in this simulation.

A. Single Target Moves Along A Straight Route

Assume that the target moves along a linear path from (3.00
m, 4.00 m) to (3.37 m, 4.49 m). A 2D FFT is applied to the
echo signal after background clutter removal, generating an
RD plot at a signal-to-noise ratio (SNR) of 20 dB, as shown
in Fig. 3(a). As analyzed in Section III, the six main multipaths
associated with a single target exhibit a strong geometric
relationship in the RD spectrogram. After obtaining the path
identification results, the proposed method further estimates
the target location and reconstructs the building layout. The
target localization and building layout reconstruction results
obtained using the proposed method are presented in Fig. 3(b).

To validate the feasibility of the algorithm, localization
results using the grid-matching method (GMM) [6] are shown
in Fig. 3(c), and the root mean square error (RMSE) [13]
is introduced to evaluate its performance. The horizontal
coordinate of the LOS wall’s intersection with the x-axis is
used as a reference for determining its location. At an SNR
of 20 dB, the RMSE for 50 frames is 0.06 m. The LOS wall
position is estimated as 5.01 m with an RMSE of 0.01 m. The
LOS wall angle is 80.31°, with an RMSE of 0.31°, while the
NLOS wall angle is 79.70°, with an RMSE of 0.30°. Since the
GMM method requires prior knowledge of the building scene,
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(a) (b)

Fig. 4. Relationship between parameter estimation error and SNR. (a)
Localization error of different algorithms and (b) Angle error of LOS and
NLOS walls and positional error of LOS walls.

its performance is evaluated only in terms of localization
accuracy. The comparison results show an RMSE of 0.07 m
over 50 frames. However, redundant ghosts can be observed,
negatively impacting target detection performance. In contrast,
the proposed algorithm not only improves localization accu-
racy but also enables effective building layout reconstruction,
demonstrating its broader applicability.

To further assess the robustness of the proposed algorithm,
100 Monte Carlo experiments are conducted to evaluate pa-
rameter estimation performance under different SNR condi-
tions. As shown in Fig. 4(a), the proposed method maintains
stable performance across various SNR levels, whereas the
performance of the GMM method significantly deteriorates
at lower SNRs. In addition, the relationship between the
building layout estimation results and the SNR is shown in
Fig. 4(b). The results indicate that the proposed algorithm
effectively estimates building layout parameters even in low-
SNR environments, demonstrating strong robustness.

B. Two Targets Move Along Straight Routes

To further verify the feasibility of the proposed method in
multi-target scenarios, a simulation experiment involving two
targets is conducted. Assume that one target moves along a
straight path from (3.00 m, 4.00 m) to (3.37 m, 4.37 m), while
another target moves from (3.88 m, 5.00 m) to (4.24 m, 5.49
m). The proposed method enables separate target localization
and building layout reconstruction for both targets, with the
results presented in Fig. 5. To obtain the final estimation, the
mean value of the building layout parameters derived from the
estimation of each target is taken as the overall result. At an
SNR of 20 dB, the RMSE for target 1 over 50 frames is 0.06
m, while for target 2, it is 0.10 m. The LOS wall position is
estimated at 5.01 m, with a RMSE of 0.01 m. The LOS wall
angle is 79.63°, with an RMSE of 0.37°, while the NLOS wall
angle is 80.13°, with an RMSE of 0.13°. Considering that the
target in the EM simulation experiment is a metallic cylinder
with a radius of 0.20 m, such an RMSE appears reasonable.

V. CONCLUSION

In this paper, we propose a novel joint estimation algorithm
for NLOS target localization and building layout reconstruc-
tion, aiming to mitigate the limitations of existing methods
that rely on prior environmental knowledge. The algorithm
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Fig. 5. Simulation results of two targets moving along straight routes.

integrates RD spectral topological feature extraction for TOA
estimation and the IAA for DOA estimation, enabling accurate
multipath ghost localization. Additionally, the spatial matching
process ensures precise localization and layout reconstruction.
EM simulations confirm that the proposed method improves
target localization accuracy and demonstrates robustness in
complex building environments.
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[3] M. Gustafsson, Å. Andersson, T. Johansson, S. Nilsson, A. Sume
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