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Abstract—Polarization-sensitive arrays are capable of enhanc-
ing anti-jamming performance by leveraging Degrees of Freedom
(DoFs) in the joint spatial and polarization domain. However,
existing works employ either full electromagnetic (EM) vec-
tor antennas or simple dual-polarized antennas, neglecting the
flexibility in antenna polarization selection. In our previous
works, an optimal sparse scalar antenna array was designed
for improved adaptive beamforming. Building upon these works,
this paper proposes an optimal design of sparse polarization-
sensitive array in terms of maximum signal-to-interference-plus-
noise ratio (MSINR). To characterize the compound impact of
antenna polarization and array configuration on the SINR, we
define a parameter, referred to as spatial-polarization correlation
coefficient (SPCC), which is the product of spatial correlation
coefficient (SCC) and polarization correlation coefficient (PCC)
in the scenario of single source and single interference. The two
parameters, SCC and PCC are minimized separately for opti-
mal sparse polarimetric array design. Simulations demonstrate
significant SINR improvement with optimal sparse polarimetric
arrays, especially in suppressing mainlobe interferences.

Index Terms—Sparse arrays, Spatial-polarization correlation
coefficient, Antenna selection, Polarization selection.

I. INTRODUCTION

Compared to scalar antenna arrays, polarization-sensitive
arrays (PSAs), which are comprised of multiple electromag-
netic (EM) dipoles, are capable of achieving superior anti-
jamming performance attributed to the additional Degrees
of Freedom (DoFs) in the polarization domain. Modern po-
larimetric radars are capable of transmitting waveforms in
both horizontal and vertical directions and are widely used in
various application fields, especially in weather detection [1],
[2]. There are a few works in the literature which investigate
the role of polarization played in filtering performance [3],
[4]. Moreover, Li et al. verified that the polarization differences
between the source and interference can be utilized for filtering
and put forward a Spatial-Polarization Least Mean Square
(SPNLMS) algorithm [5]. Yang et al. introduced the construc-
tion of the oblique projection spatial-frequency-polarization
filter (OPSFPF) which exhibits superior performance when
more processing domains are involved [6]. Mao et al. proposed
a Segment Sampling Filtering (SSF) algorithm in the spatial-
polarization domain based on dual-polarized arrays for sup-
pressing mainlobe interferences [7]. However, most existing
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studies in the literature either use full EM vector antennas with
six dipoles or simple dual-polarized antennas, overlooking the
flexibility and potential DoFs in antenna polarization selection.

Although polarization-sensitive arrays are effective in in-
terference suppression, their prohibitively high hardware cost,
associated with one complete radio frequency (RF) processing
chain for each dipole, hinders their practical applications.
Sparse arrays, usually performed by prejudicially selecting
a subset of antennas from a full dense counterpart via RF
switches, present themselves as favorable solutions to reduce
Size, Weight, and Power (SWaP) while preserving the full
array performance [9], [10]. Some studies aim to synthesize
a desired-shaped beampattern using the minimum number of
antennas [11], [12], while others focus on selecting an optimal
subset of antennas or beams from a large set to maximize
the array gain (AG) [13], [14]. Hamza and Amin proposed
a matrix completion method to integrate structured and un-
structured sparse arrays [15]. Our previous work delved into
a cognitive-driven MIMO array design in achieving enhanced
beamforming and anti-jamming in the dynamic environment
[16]–[18]. However, all these works on sparse arays are re-
stricted to conventional scalar antennas, none of them consider
the sparse array design of polarization sensitive antennas.

To fill the existing gap, we investigate the optimum design
of sparse PSAs for enhanced anti-jamming performance in this
work. In order to quantitatively characterize the compound
impact of antenna polarization and array configuration on the
output SINR of adaptive beamformers, a parameter, referred
to as spatial-polarization correlation coefficient (SPCC) is
defined, which is the product of spatial correlation coefficient
(SCC) and polarization correlation coefficient (PCC) in the
scenario of single source and single interference. The parame-
ter SCC, which was proposed in our previous works, describes
the effect of array configuration on SINR in spatial domain,
while the PCC characterizes the separation between the source
and the interference in the polarization domain. The optimal
design of PSAs can be achieved by separately minimizing SCC
and PCC. Note that although there are some works exploring
the selection or reconfiguration of PSAs, they fix the antenna
polarization status to either dual- or triple-polarized [19], [20],
without considering the antenna polarization selection.

The main contributions of this works are summarized as
follows,

• define a parameter, SPCC, to characterize the compound
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impact of antenna polarization and array configuration on
the output SINR of adaptive beamforming;

• propose an optimal design of SPAs to enhance the in-
terference suppression performance while reducing the
system overhead via joint antenna and dipole selection.

• verify the effectiveness of antenna polarization selection
in terms of improving anti-jamming performance.

This paper is organized as follows: Sect. II introduces the
joint spatial-polarization beamforming. Sect. III proposes the
optimal design of PSAs. Simulation results are presented in
Sect. IV. Conclusions are drawn in Sect. V.

II. JOINT SPATIAL-POLARIZATION BEAMFORMING

In this section, we first review the waveform polarization,
based on which we introduce the beamforming in the joint
spatial-polarization domain and derive the SPCC parameter.

A. Waveform Polarization

The electric and magnetic field of transverse electromag-
netic (TEM) waves are always perpendicular to the wave
propagation direction. Under far-field conditions, assuming
the TEM wave propagates along the positive z-direction, the
instantaneous electric field vector, denoted as E(t), can be
decomposed into orthogonal components in the xoy-plane,

E(t) = Ex(t)x+ Ey(t)y, (1)

where Ex(t) = E1e
j(2πf0t+φ1), Ey(t) = E2e

j(2πf0t+φ2), and
x and y are orthonormal basis vectors in the xoy-plane.

The complex electric-field vector can then be rewritten as,

Ê =

[
E1e

jφ1

E2e
jφ2

]
= A

[
cos γ

sin γejδ

]
ejφ1 , (2)

where A =
√

E2
1 + E2

2 denotes the electric-field amplitude,
γ = tan−1(E1/E2) is the polarization auxiliary angle, and
δ = φ2 − φ1 is the polarization phase difference. The value
ranges of γ and δ are γ ∈ [0, π

2 ] and δ ∈ [0, 2π), respectively.
It can be seen from Eq. (2) that the polarization information of
the EM wave mainly depends on the amplitude ratio tan γ and
the phase difference δ. For example, when δ = 0 or δ = π,
the EM wave is linearly polarized (LP); when δ = ∓π

2 and
γ = π

4 , the EM wave is circularly polarized (CP) [21].
Assume that the polarization-sensitive antenna is located

at the origin of the coordinate system, and the direction of
arrival (DOA) of the signal is (θ, φ), where θ and φ represent
the elevation and azimuth, respectively. The signal is a fully
polarized wave with polarization parameters (γ, δ), and the
complex baseband signal carrying information is g(t). Suppose
the antenna is a full EM vector sensor, which can measure the
electric field vectors in three directions and the magnetic field
vectors in three directions. The polarized signal vector received
by the antenna is,

sP (t) = sP (θ, φ, γ, δ)g(t), (3)

where sP (θ, φ, γ, δ) is defined as the steering vector in the
polarization-domain, given by,

sP (θ, φ, γ, δ) = [Ex, Ey, Ez, Hx, Hy, Hz]
T (4)

=D(φ, θ)p(γ, δ),

where D(φ, θ) is called the spatial angular position matrix,
and p(γ, δ) is called the polarization state vector, defined as,

D(φ, θ) =


−sinφ cosθcosφ
cosφ cosθsinφ
0 −sinθ

cosθcosφ sinφ
cosθsinφ −cosφ
−sinθ 0

 ,p(γ, δ) =

[
cosγ

sinγ · ejδ
]

It can be seen from Eq. (4) that the signal received by the
polarization-sensitive antenna is related to both the polariza-
tion state and the DOA of the incident signal.

B. Joint Spatial-Polarization Beamforming
Consider a uniform linear array (ULA) where N polar-

ization sensitive antennas are evenly arranged on the Y -axis
with an inter-element spacing of d. Assuming there is an
interference j(t) intruding the array near the desired signal,
by vectorizing the data received by all antennas across all six
dipoles, the echo vector received by the PSA is expressed as,

r(t) = sg(t) + vj(t) + n(t), (5)

where n(t) is the zero-mean complex Gaussian noise with
covariance σ2

nI6N , s and v are the joint spatial-polarization
steering vectors of the desired signal and interference, re-
spectively. We denote the desired signal and the interference
as (θs, φs, γs, δs) and (θj , φj , γj , δj), respectively. The joint
spatial-polarization steering vector s is defined as,

s = sP (φs, θs, γs, δs)⊗ ss(φs, θs) (6)

where ⊗ represents the Kronecker product, and ss is the spatial
domain steering vector, given by,

ss =
[
1, · · · , e−j(N−1) 2π

λ d sin θs sinφs

]T
, (7)

To enhance the desired signal at the receive end, we employ
the Capon beamformer to maximize output SINR, which can
be expressed as,

SINR =
Ps|wH

Capons|2

wH
CaponRj+nwCapon

= Pss
HR−1

j+ns, (8)

where Ps is the power of the desired signal and Rj+n denotes
the interference-plus-noise covariance matrix, that is,

Rj+n = Pjvv
H + σ2

nI6N , (9)

with Pj = E{j(t)jH(t)} representing the interference power.
Applying the matrix inversion lemma to Eq. (9), the inverse

matrix of Rj+n can be expressed as,

R−1
j+n = (Pjvv

H + σ2
nI6N )−1 (10)

=
1

σ2
n

(
I6N − INR

1 + INR ∥v∥2
vvH

)
,
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where INR =
Pj

σ2
n

represents the interference-to-noise power
ratio (INR). By substituting Eq. (10) into Eq. (8), the output
SINR can be re-expressed into,

SINR = SNR ∥s∥2
(
1− χ

∣∣vHs
∣∣2

∥s∥2 ∥v∥2

)
(11)

where SNR = Ps

σ2
n

denotes the input SNR, and χ = INR∥v∥2

1+INR∥v∥2

is a parameter that reflects the interference intensity. Typically,
in a strong interference environment where INR ≫ 1, we have
χ ≈ 1. Under this condition, Eq. (11) is further simplified as,

SINR ≈ SNR ∥s∥2 (1− ρ) , (12)

where,

ρ =

∣∣vHs
∣∣2

∥s∥2 ∥v∥2
=

∣∣vP
HsP

∣∣2
∥sP ∥2 ∥vP ∥2

·
∣∣vs

Hss
∣∣2

∥ss∥2 ∥vs∥2
= ρP · ρs,

(13)
is defined as the spatial-polarization correlation coefficient
(SPCC) between the desired signal and interference. SPCC
characterizes the separation between the source and the inter-
ference in the joint spatial-polarization domain. Moreover, ρs
and ρP are the spatial correlation coefficient (SCC) and the
polarization correlation coefficient (PCC) between the desired
signal and the interference, respectively, which are defined as,

ρs =

∣∣vs
Hss

∣∣2
∥ss∥2 ∥vs∥2

, ρP =

∣∣vP
HsP

∣∣2
∥sP ∥2 ∥vP ∥2

. (14)

Note that the derivation of Eq. (14) utilizes the following
properties of kronecker product,

∥s∥2 = ∥sP ⊗ ss∥2 = ∥sP ∥2 ∥ss∥2 , (15)

∥v∥2 = ∥vP ⊗ vs∥2 = ∥vP ∥2 ∥vs∥2 , (16)

vHs = (vP ⊗ vs)
H(sP ⊗ ss) = (vH

P sP )(v
H
s ss). (17)

Substituting Eq. (14) into Eq. (12), the maximum array
output SINR can be expressed in terms of ρs and ρP as,

SINR = SNR ∥s∥2 (1− ρP · ρs) . (18)

Combining Eqs. (12) and (18), it can be concluded that
the beamforming output SINR monotonically decreases with
the SPCC ρ between the desired signal and interference, or
equivalently, with the spatial correlation coefficient ρs and
the polarization correlation coefficient ρP . Additionally, the
norm of the source steering vector ∥s∥2 indicates the array
gain against white noise and more antennas with more dipoles
underscores a larger gain.

III. SPARSE POLARIZATION-SENSITIVE ARRAY DESIGN

In this section, we consider the sparse PSA design via
joint antenna and polarization selection, aiming to reduce the
cost while enhancing the output SINR. Specifically, consider
selecting a subset of K antennas from an N -element full
ULA and connecting them to the RF-chains for processing.
Additionally, the polarization characteristics of the selected
antennas are jointly optimized via dipole selection to further

improve the filtering performance. To this end, we introduce
an antenna selection vector z ∈ {0, 1}N and a dipole selection
vector x ∈ {0, 1}6, with an entry of “1” indicating the
corresponding antenna or dipole selected, otherwise discarded.
Consequently, ρs, ρP and ||s||2 of a selected sparse PSA can
be expressed as,

ρs =

∣∣vs
Hdiag (z) ss

∣∣2
K2

, (19)

ρP =
|vP

Hdiag(x)sP |2

vP
Hdiag(x)vP • sPHdiag(x)sP

, (20)

||s||2 = KsHP diag(x)sP . (21)

The SINR maximization problem can be decomposed into
two independent subproblems: antenna selection and polariza-
tion selection. For antenna selection, since the SINR monoton-
ically decreases with respect to ρs, the objective is to minimize
ρs in terms of antenna selection z. Once the optimal array
configuration is determined, the polarization selection is then
optimized to maximize the SINR in the second step.

A. Antenna Selection
As previously discussed, the optimal design of the array

geometry necessitates minimizing the SCC ρs by solving the
following optimization problem,

(Q1) min
z

ρs, (22a)

s.t. 1T z = K, (22b)

z ∈ {0, 1}N . (22c)

The constraint 1T z = K ensures that exactly K antennas are
selected. Substituting Eq. (19), the objective function ρs can
be rewritten as,

ρs =
zTRsz

K2
, (23)

where Rs = diag(vH
s )ss · sHs diag(vs). It is obvious that

Rs is a positive semi-definite matrix, which ensures that the
numerator zTRsz is a real number. Consequently, we have,

zTRsz = zT real(Rs)z. (24)

Let Rs = real(Rs), then we can transform problem (Q1) into
the real domain as follows,

(Q2) min
z

zTRsz, (25a)

s.t. 1T z = K, (25b)

z ∈ {0, 1}N . (25c)

In (Q2), since Rs is positive semi-definite, Rs is also
positive semi-definite. Thus, the objective function in (25a) is
convex. However, the binary constraint (25c) is non-convex.
To resolve this, we relax it into a box constraint and iteratively
enhance sparsity using the re-weighted l1 method [22]. In the
(k + 1)-th iteration, the optimization problem is given by,

(Q3) min
z

zTRsz+ β0u
T
(k)z, (26a)

s.t. 1T z = K, (26b)
0 ≤ z ≤ 1, (26c)

2254



where β0 is a preset constant, uT
(k) =

1
z(k)+ε0

is the weighting
vector used to promote the sparsity of z, z(k) is the solution
to the k-th iteration, and ε0 is a small positive constant.

B. Polarization Selection

We further consider optimizing the antenna polarization via
dipole selection to maximize the SINR. Under the optimized
array configuration, substituting Eqs. (20) and (21) into Eq.
(12), we can express the maximum output SINR in Eq. (18)
as a function of variable x as follows,

f(x) =SNR ·K(sHP diag(x)sP − ρs ·
|vP

Hdiag(x)sP |2

vP
Hdiag(x)vP

)

=SNR ·K(−ρs
xT diag(vH

P )sP s
H
P diag(vP )x

xT diag(vH
P )vP

+ xT diag(sHP )sP ) (27)

Define RP = diag(vH
P )sP s

H
P diag(vP ), RP = real(RP )

s̄P = diag(sHP )sP , and v̄P = diag(vH
P )vP , Eq. (27) can be

rewritten as,

f(x) = SNR ·K
(
xT s̄P − ρs

xTRPx

xT v̄P

)
. (28)

In this work, we assume that K antennas share the same po-
larization configuration, where each dipole type needs a dedi-
cated RF channel. While increasing the number of polarization
channels can enhance system performance, it also significantly
raises hardware costs. Thus, we aim at maximizing SINR
while limiting the number of selected dipoles through a penalty
term. The optimization problem for polarization selection can
be formulated as,

(Q4) max
x

f(x), (29a)

s.t. 1T z = L, (29b)
s.t. x ∈ {0, 1}, (29c)

where the constraint 1T z = L ensures that exactly L dipoles
for each polarized antenna are selected.

In (Q4), since the first term of f(x) is linear and the second
term is convex, the entire objective function is convex. The
non-convexity of (Q4) stems solely from the binary constraint
(29c). Thus, we can iteratively solve (Q4) using the same re-
weighted l1 approach as in solving (Q3).

IV. SIMULATION RESULTS

In the simulation, we consider a full array composed of
N = 16 elements with half-wavelength inter-element spacing
and select K = 8 antennas from it to form the sparse
beamformer. Suppose there is one target and one interference
in the observation region, their spatial-polarization parameters
are denoted as (θs = 35◦, φs = 90◦, γs = 45◦, δs = 0)
and (θj = 30◦, φj = 90◦, γj = 81◦, δj = 0◦), respectively,
with the SNR of the target being -20dB and the INR of the
interference being 30dB.

In this scenario, we jointly optimize antenna and polar-
ization selection applying the proposed method in Section
III under the constraints of selecting L = 2, 3, 4, 5 dipoles,

respectively. The optimum antenna-polarization configurations
are depicted in Fig. 1. As derived in Sect. III, antenna selection
and polarization selection can be regarded as two independent
subproblems. Hence, the optimum array configuration remains
identical under the constraints of different selected dipole
number, while antenna polarization is different.

�� ��

1 5 72 3 4 6 8 2015 1713 14 16 18 199 13 1510 11 12 14 16

Optimum spatial configuration

-selected

-not selected

��

��

���� ��

Optimum polarization configuration

��
�� ��

���� ��

��

� = 2

� = 5

� = 3

� = 4

Fig. 1: Optimum PSA, where Ex, Ey, Ez denote electric and
Hx, Hy, Hz magnetic dipoles along x, y and z axis.

To demonstrate the necessity of polarization selection, we
exhaustively evaluated the output SINR for all possible dipole
compositions under the optimal array configuration in the
cases of L = 2, 3, 4, 5, respectively. The results are shown in
Fig. 2. Taking L = 2 as an example, we enumerate all C2

6 = 15
possible cases of selecting 2 dipoles from 6. The optimal
polarization selected by our proposed method is highlighted
in the cyan circles. It can be deduced from the results that
different polarization selections have a significant impact on
beamforming performance, and the proposed algorithm is
capable of efficiently selecting the optimal polarization status
under arbitrary dipole number constraints.

0 5 10 15 20

Index

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

S
IN

R
(d

B
)

L=2
L=3
L=4
L=5

Optimal 2-dipole configuration
Optimal 3-dipole configuration
Optimal 4-dipole configuration
Optimal 5-dipole configuration

Fig. 2: SPACE SINR performance in all dipole selections.

To investigate the influence of array configuration and dipole
selection on SINR performance, we compared three array
configurations, as shown in Fig. 3a: (1) the optimized array
with joint antenna-polarization selection, (2) the 8-antenna
ULA with half-wavelength inter-element spacing, and (3)
the random array containing the first and 16th antennas to
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maintain the maximum aperture. The signal is fixed (θs =
35◦, φs = 90◦, γs = 45◦, δs = 0) and the interference
polarization parameters are (γj = 81◦, δj = 0◦). In Fig.
3a, the optimized array configuration, selected via angle-
dependent optimization, exhibits significantly improved SINR
compared to both uniform and random arrays. This enhance-
ment primarily manifests in narrower null width and improved
spatial resolution. Moreover, we can find from Fig. 3b that
polarization optimization plays a critical role in suppressing
mainlobe interferences, where the optimized configuration
achieves at least 2dB SINR improvement over random dipole
selection. This observation further emphasizes the necessity of
polarization optimization.

-100 -50 0 50 100

Interference Angle SPACE(°)

-16

-15

-14

-13

-12

-11

-10

S
IN

R
 (

dB
)

Optimum array
Uniform array (d = /2)
Random array

X 30
Y -11.06

(a) Fixed optimal dipole selection

-100 -50 0 50 100

Interference Angle SPACE(°)

-40

-35

-30

-25

-20

-15

-10

S
IN

R
 (

dB
)

Optimum dipole selection
Random dipole selection 1
Random dipole selection 2

(b) Fixed optimal antenna selec-
tion

Fig. 3: Performance of PSA versus different interference angle.

V. CONCLUSIONS

This paper proposed an optimal sparse polarization-sensitive
array design to improve anti-jamming performance. The sparse
SPA was optimized in terms of minimizing the spatial-
polarization correlation coefficient (SPCC), which measured
the compound impact of array configuration and antenna
polarization on output SINR. The optimal array configuration
and antenna polarization were designed via selecting a subset
of antennas and a subset of dipoles to minimize the spatial
correlation coefficient and polarization correlation coefficient.
The numerical results showed that the proposed sparse SPA
can fully deploy the DoFs in the joint spatial and polariza-
tion domain, thus improving the anti-jamming performance,
especially in suppressing mainlobe interferences with reduced
hardware cost compared to full electromagnetic vector arrays.
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