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Abstract—We compare the existence and uniqueness of the
analytic singular value decomposition (SVD) of a matrix A(z) to
that of the analytic spectral or eigenvalue decomposition (EVD) of
R(z) = A(z)AP(z). Both cases require oversampling if the ma-
trices are connected to multiplexing operations. Additionally, the
analytic SVD may require additional oversampling due to zero
crossings of its singular values, which, different from ordinary
matrices, cannot necessarily be constrained to be non-negative. It
has recently been shown that oversampling can be compensated
in parts by permitting singular values to be complex-valued
holomorphic on the unit circle, and additionally for the SVD to
perform a block-diagonalisation to pseudo-circulant subblocks.
We demonstrate here that complex-valued singular values can
also be motivated through fractional delay factors, link the SVD-
variants to the analytic spectral decomposition, and discuss some
aspects of the uniqueness of both the SVD and the spectral
decomposition.

I. INTRODUCTION

Linear algebraic decompositions are an important tool

in many disciplines, with the singular value decomposition

(SVD) [1], [2] and the spectral decomposition [3] amongst

the important ‘big six’ linear algebraic operations [4]. The

singular value decomposition plays an important role gener-

ally in signal processing [5]–[7], with important applications

for example for the factorisation of multiple-input multiple-

output communications channels [8]. Similarly, the spectral

decomposition — an eigenvalue decomposition (EVD) applied

to a Hermitian matrix — is central to many statistical and array

processing problems and optimisations [9]. When considering

broadband multichannel problems, advantageous descriptions

use matrices of polynomials or generally of analytic functions.

To solve such problems, standard linear algebraic factorisa-

tions can only e.g. diagonalise such a matrix for a specific

parameter value. A complete diagonalisation requires polyno-

mial or analytic matrix factorisations [9], [10].

The existence of an analytic EVD for parahermitian matri-

ces — i.e. a spectral decomposition — has been addressed

in [11]–[13], and that of an SVD in [13], [14]. In some

cases, these decompositions only exist with analytic factors

if the matrix to be decomposed is oversampled, whereby

the oversampling factor can vary across the SVD and EVD.

One reason for oversampling both SVD and EVD lies in

any multiplexing that is embedded in the matrices to be

decomposed. For the SVD, where analytic singular values may

possess zero crossings, an odd number of such transitions will

require an additional oversampling by two.

In order to curb or even eliminate the need for oversampling,

for the analytic SVD a number of alternative factorisations

have been proposed in [15], whereby it may suffice to tolerate

complex-valued singular values holomorphic on the unit circle,

or even a block-diagonal form for the decomposition. In this

paper, the aim is to firstly harmonise these results for a matrix

A(z) : C → C
M×N with the analytic spectral factorisation of

A(z)AP(z), where AP(z) = {A(1/z∗)}H is the parahermitian

transpose of A(z). Secondly, we aim to establish aspects of

the non-uniqueness for these proposed factorisations, which is

important when seeking algorithmic implementations.

In the following, Sec. II will introduce a unified model

for A(z) and a parahermitian matrix R(z) = A(z)AP(z).
Thereafter, Sec. III will recall the analytic SVD in [13], [14],

and its variations in [15]. Sec. IV will address equivalent for-

mulations for the analytic spectral decomposition. A summary

and consequences for algorithm development are presented in

Sec. V.

II. SIGNAL / SOURCE MODEL

A. Innovation Filters

In order to describe the 2nd order statistics of a measure-

ment vector x[n] ∈ C
M with complex Gaussian elements

that exhibit both temporal and spatial correlation, we use an

innovation filter [16] to tie x[n] to a vector of N temporally

and spatially uncorrelated Gaussian signals in u[n] ∈ C
N with

zero mean and unit variance. The innovation filter here is

a system matrix A[n] as show in Fig. 1, whose element in

the mth row and ℓth column represents the impulse response

between the ℓth excitation in u[n] and the mth measurement

in x[n], such that overall with A[n] ∈ C
M×N we have

x[n] =
∑

ν

A[ν]u[n− ν] . (1)

In the z-domain, A(z) =
∑

n A[n]z−n or for short

A(z) • ◦ A[n], is a matrix of transfer functions, which we

assume to be analytic in z ∈ C.

u[n] x[n]A[n]

Fig. 1. Innovation filter model for the generation of the measurement x[n].
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B. Space-Time Covariance

The formulation of the space-time covariance matrix [9],

[17],

R[τ ] = E
{
x[n]xH[n− τ ]

}
, (2)

can exploit the source model of (1), where E{·} is the

expectation operator. Thus, for the z-transform of the space-

time covariance, the cross-spectral density (CSD) matrix

R(z) • ◦ R[τ ], we have [18]

R(z) = A(z)AP(z) , (3)

with the parahermitian transpose AP(z) = {A(1/z∗)}H [17].

Therefore, the space-time covariance and CSD matrices can

be directly related to the innovation filter A(z).

C. Multiplexed System

Of particular importance to the existence of the analytic

SVD and EVD are innovation models that relate to block-

filtering [19], [20], where multiple inputs may be multiplexed

across a smaller number of channels at a higher rate, and the

outputs arise from demultiplexing. A simple example with a

single input single output system H(z) and multiplexing by

F = 2 is shown in Fig. 2. For the general case F ∈ N, A(z)
will be a pseudo-circulant matrix, such that

A(z) =









H0(z) H1(z) . . . HF−1(z)

z−1HF−1(z) H0(z)
...

...
. . . . . .

...

z−1H1(z) . . . z−1HF−1(z) H0(z)









, (4)

where entries are formed by the F polyphase com-

ponents Hf (z), f = 0, . . . , (F − 1), of H(z) =
∑F−1

f=0 z
−fHf (z

F ) [19].

Any pseudo-circulant matrix can be diagonalised by

WF (z) = diag
{
1, z−1, . . . , z−F+1

}
TF , where TF is an

F -point discrete Fourier transform matrix normalised to be

unitary, such that [17], [20]

A(z) = WF (z
1/F )D(z1/F )WP

F(z
1/F ) , (5)

with

D(z) = diag
{

H(z), H(zej
2π
F ), . . . , H(zej

2π(F−1)
F )

}

. (6)

↑2

↑2 ↓2

↓2

H(z)z
−1

+

z
−1

A(z)

u[n] x[n]

χ[m]

Fig. 2. Innovation filter A(z) arising through multiplexing by F = 2 across
a system H(z).

The factors on the r.h.s. of (5) only become analytic if A(z)
is oversampled F -times. Since (5) is necessary and sufficient

for a pseudo-circulant matrix [14], [17], a product of pseudo-

circulant matrices remains pseudo-circulant. Specifically for

R(z) = A(z)AP(z) we have

R(z) = WF (z
1/F )D(z1/F )DP(z1/F )WP

F(z
1/F ) , (7)

where the term D(z1/F )DP(z1/F ) is diagonal and parahermi-

tian i.e. real-valued on the unit circle. However, any fractional

powers of z relate to Puiseux series [13], and for F > 1 are

not analytic in z ∈ C.

III. ANALYTIC SINGULAR VALUE DECOMPOSITION

We next consider an analytic SVD of A(z). There are

different choices. A direct extension of the SVD of an ordinary

matrix [3], as well as of the analytic SVD in a real inter-

val [21], [22] leads to singular values that are constrained to be

real. Alternative forms, where the SVD yields complex valued

or even block-diagonal factors via paraunitary operations, has

been explored in [15]. We relate these forms to the source

model of Sec. II.

A. Real-Valued Singular Values

For the analytic SVD we have [13], [14],

A(z) = U1(z
1/(κF ))Σ(z1/(κF ))V P

1(z
1/(κF )) , (8)

where U(z) and V (z) are paraunitary, and Σ(z) is parahermi-

tian and diagonal. The parahermitian property of Σ(z) implies

that on the unit circle, Σ(ejΩ) is real-valued. In order to make

the r.h.s. in (8) analytic, it may be necessary to oversample

A(z) by a factor κF . The factor F is required if A(z) is F -

times multiplexed. The factor κ ∈ {1, 2} relates to the singular

values, and will be motivated below. For the remainder of

this paper, we assume that all singular values, except those

identical to zero, are distinct.

As a peculiar difference to the standard SVD for ordinary

matrices, Σ(ejΩ) cannot be constrained to be non-negative in

order to admit an analytic Σ(z); this has been known for

the analytic SVD on a real interval [21], [22], and has also

recently been established for the factorisation in the discrete

time case [13], [14]. In order to induce a 2π-periodicity of

Σ(ejΩ), every eigenvalue must possess an even number of zero

crossings on the unit circle, which may necessitate κ = 2. We

explore this by way of an example.

Example 1: Consider the matrix

A(z) =
1

2

[
1 + z−1 + 2z−2 1− z−1

1− z−1 1 + z−1 + 2z−2

]

, (9)

which is not related to multiplexing and hence cannot be

brought into a pseudo-circulant form. It possesses an analytic

SVD

A(z)= T2

︸︷︷︸

U1(z
1
2 )

[
z + z−1

z
1
2 + z−

1
2

]

︸ ︷︷ ︸

Σ(z
1
2 )

diag
{

z−1, z−
3
2

}

T2

︸ ︷︷ ︸

V P
1(z

1
2 )

.

(10)
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Fig. 3. Singular values of Example 1 with zero crossings on the interval
Ω ∈ [0; 2π) marked by circles.

Fig. 4. Modulated singular values of Example 2 with zero crossings within
the first 2π-cycle of Ω marked by circles.

The singular values σ1(z
1
2 ) = z+z−1 and σ2(z

1
2 ) = z

1
2 +z−

1
2

are depicted in Fig. 3. Because σ2(e
jΩ/2) only has a single zero

crossing on the interval 0 ≤ Ω < 2π, it is only 4π-periodic,

and r.h.s. factors in (10) only become analytic if oversampled

by κ = 2. Also, if singular values were constrained to be

non-negative, i.e. if they were reflected at zero in Fig. 3, they

would become non-differentiable in those reflection points and

hence would not be analytic. △
Example 2: As a slightly modified example from [14],

consider the matrix A(z) = [z−1, 1; 1, 1]. With J the

reverse identity, JA(z) is pseudo-circulant and obtained from

a system H(z) = 1+z−1 via multiplexing by F = 2 as shown

in Fig. 2. For an analytic SVD, it is possible to write

A(z)=JW2(z
1
2 )

︸ ︷︷ ︸

U1(z
1
4 )

[
z

1
4 + z−

1
4

z
1
4 + z−

1
4

]

︸ ︷︷ ︸

Σ(z
1
4 )

z−
1
4WP

2 (z
1
2 )

︸ ︷︷ ︸

V P
1(z

1
4 )

. (11)

The singular values σm(ejΩ/4), m = 1, 2, are depicted in

Fig. 4, which are modulated versions of each other akin to

(6), and require oversampling with F = 2 due to multiplexing

and κ = 2 due to each of the singular values only possessing

one zero crossing within any 2πF -interval of Ω. Due to the

overall 8π-periodicity of σm(eΩ/4), (11) must be κF = 4-fold

oversampled in order to ensure that the r.h.s. is analytic. △
By constraining Σ(ejΩ/(κF )) to be real-valued on the unit

circle, apart from their ordering and a sign change, the singular

values are therefore unique. If the singular values are distinct,

then their associated left- and right-singular vectors are unique

up to arbitrary allpass functions that is coupled across both

vectors [14]: with U1(z) and V 1(z) containing valid singular

vectors, then, assuming M = N , so are U1(z)Φ(z) and

V 1(z)Φ(z), with Φ(z) = diag{ϕ1(z), . . . , ϕM (z)} a matrix

of arbitrary analytic allpass filters.

B. Complex-Valued Singular Values

In [15], a complex-valued analytic SVD

A(z) = U2(z
1/F )S(z1/F )V P

2(z
1/F ) (12)

is shown to always exist, where U2(z) and V 2(z) are pa-

raunitary. The matrix S(z) is diagonal but S(ejΩ) may be

complex-valued holomorphic; oversampling w.r.t. κ = 2 is

no longer required. As an example, the diagonalisation of

a pseudo-circulant system via (5) and (6) demonstrates this

without placing any restrictions on H(z).
In order to relate S(z) in (12) to Σ(z) in (8), it suffices to

consider individual singular values, say s(z) and σ(z1/κ). We

treat s(z) as an M = 1 dimensional matrix which we subject

to an analytic SVD of the type in (8). Note that since M = 1,

there can be no multiplexing and we must have F = 1 and

can focus on oversampling by κ alone. The analytic SVD on

the unit circle yields

s(ejΩ) = σ′(Ω)v′(Ω) , (13)

where σ′(Ω) ∈ R. Since v′(Ω) is an allpass filter with

|v′(Ω)| = 1, s(ejΩ) and σ′(Ω) share the same zero crossings.

Since a bin-wise SVD must yield the same values for Ω = 0
and Ω = 2π, an analytic SVD must yield σ′(0) = −σ′(2π) in

the case that the number of zero crossings is odd. Then σ′(Ω)
is 4π-periodic, and must be oversampled by κ = 2 in order to

become analytic.

Alternatively, in the case of an odd number of zero crossings

we can align the sign between σ′(Ω) and σ′(Ω−2π) by instead

considering σ′(Ω)e−jΩ/2. Note that e−jΩ/2 is the frequency

response of a half-sample fractional delay z−
1
2 ; if required,

both the singular value and its corresponding left- or right-

singular vector can each share such a half-sample delay.

Observe that in Example 1 with (10) and in Example 2 with

(11), it is the singular values and their corresponding right-

singular vectors that share fractional delays. It is therefore

possible to write

A(z) = U2(z
1/F )Σ(z1/(κF ))V P

1(z
1/(κF )) . (14)

This has been recognised in [15], even though without the

system-theoretic reference to fractional delays.

Example 3: Recalling A(z) from Example 1, we can instead

write for its analytic SVD

A(z) = T2

︸︷︷︸

U2(z)

[
z + z−1

1 + z−1

]

︸ ︷︷ ︸

S(z)

z−1
T2

︸ ︷︷ ︸

V P
2(z)

. (15)

The fractional delay of the second singular value in (10)

has been absorbed into its corresponding right-singular vector.

With the singular values shown in Fig. 5, this SVD exists now

without the need for oversampling but the second singular

value is no longer parahermitian and hence no longer real-

valued on the unit circle. △
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Ω
R{sm(ejΩ)}

I
{
s
m
(e

jΩ
)}

Fig. 5. Complex-valued 2π-periodic singular values of Example 3.

Without the real-valued constraint for S(z),
S(z)Ψ(z) also represents valid singular values if

Ψ(z) = diag{ψ1(z), . . . , ψM (z)} contains arbitrary allpass

filters. Thus, w.r.t. Sec. III-A and with M = N , U2(z)Φ(z)
and V 2(z)Φ(z)Ψ(z) also contain valid left- and right-singular

vectors, and their ambiguities are now decoupled.

C. Pseudo-Circulant Block-Diagonalisation

As a further type of analytic singular value decomposition,

arguments in [15] based on [14] have proven that it is possible

to write, dispensing of any potential oversampling,

A(z) = U3(z)C(z)V P
3(z) , (16)

where U3(z) and V 3(z) are paraunitary, and C(z) is a block-

diagonal matrix. Each subblock of C(z) is a pseudo-circulant

matrix; their dimensions depend on the different multiplexing

factors incurred in A(z), assuming that different from the

single multiplexing factor in Fig. 2, various parallel or nested

multiplexed systems are possible. Nonetheless, the existence

of (16) implies that any arbitrary multiplexing structure can

brought into a parallel arrangement of multiplexed systems.

Example 4: Returning to Example 2, we have already

implicitly established how A(z) can be brought into pseudo-

circulant form. Therefore,

A(z) = J

︸︷︷︸

U3(z)

[
1 1
z−1 1

]

︸ ︷︷ ︸

C(z)

I

︸︷︷︸

V P
3(z)

. (17)

represents the analytic SVD in the sense of (16). △
To explore the uniqueness of the block-diagonal matrix

C(z) in (16), it is possible to exchange terms between the

singular values and the left- and right-singular matrices that

are paraunitary and themselves pseudo-circulant, recalling that

products between pseudo-circulant matrices remain pseudo-

circulant. This includes a number of possibilities of pseudo-

circulant matrices that are constructed from allpass functions,

but the details are beyond the scope of this paper.

IV. ANALYTIC SPECTRAL DECOMPOSITION

Below, we utilise the analytic SVD definitions to construct

equivalent forms for an analytic spectral decomposition.

A. Real-Valued Diagonal Form

If the measurement vector x[n] in Fig. 1 is related to F -fold

multiplexing via the source model A(z), then its CSD matrix

admits the analytic EVD or spectral decomposition [11]–[13]

R(z) = A(z)AP(z) = Q(z1/F )Λ(z1/F )QP(z1/F ) . (18)

The same result can be reached via the real-valued and

complex-valued analytic SVDs. For the complex-valued an-

alytic SVD, with (12) the direct equivalences w.r.t. (18),

Q(z) = U2(z) , (19)

Λ(z) = S(z)SP(z) , (20)

are straightforward: inspecting the diagonal elements of (20),

on the unit circle, λm(ejΩ) = sm(ejΩ)sHm(ejΩ) = |sm(ejΩ)|2,

m = 1, . . . ,M , the analytic eigenvalues are indeed non-

negative real. For the relation to the real-valued analytic SVD,

we exploit (14), and find

Q(z) = U2(z) (21)

Λ(z) = Σ(z1/κ)ΣP(z1/κ) . (22)

On the r.h.s. of (22), the order of all spectral zeros is doubled

and thus even, such that the product has no longer any zero

crossings. Hence any fractional terms disappear even for κ =
2, i.e. again the analytic eigenvalues are non-negative real.

Example 5: For A(z) of Example 1 and its second singular

value σ2(z
1/2) in (10), with (22) we have

λ2(z) = (z
1
2 + z−

1
2 )(z−

1
2 + z

1
2 ) = z + 2 + z−1 , (23)

which indeed no longer contains fractional terms. Inserting

the complex-valued analytic SVD in (15) for the same system

matrix A(z) in Example 3, the use of (20), such that

λ2(z) = (1 + z−1)(1 + z) = z + 2 + z−1 , (24)

leads to the same result as (23). △
Thus, the analytic real- and complex valued SVDs are

reconciled with the spectral decomposition. The additional

allpass ambiguities of the complex-valued singular values

over the real-valued ones are cancelled in the parahermitian

product S(z)SP(z), such that the analytic eigenvalues in Λ(z)
are unique up to their ordering. The non-uniqueness of the

eigenvectors in (18) is coupled to the allpass ambiguity of the

left-singular vectors via (19) and (21), and agrees with the

findings in [11], [12].

B. Pseudo-Circulant Block-Diagonalisation

Based on (16), the CSD matrix may be factorised as

R(z) = Q3(z)L(z)QP
3(z) (25)

without any need for oversampling, with Q3(z) a paraunitary

matrix, and L(z) a parahermitian and pseudo-circulant block-

diagonal matrix. W.r.t. (16), the factors are

Q3(z) = U3(z) (26)

L(z) = C(z)CP(z) , (27)

whereby L(z) is both parahermitian and pseudo-circulant.

Example 6: For the CSD matrix R(z) = A(z)AP(z)
derived from the analytic SVD in Example 4, we obtain

R(z) = J

︸︷︷︸

Q3(z)

[
2 z + 1
1 + z−1 2

]

︸ ︷︷ ︸

L(z)

J
H

︸︷︷︸

QP
3(z)

. (28)
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The matrix L(z) contains the F = 2 polyphase com-

ponents Rχ,f (z) of the power spectral density Rχ(z) =
∑F−1

f=0 z
−mRχ,f (z

F ) of χ[m] in Fig. 2, i.e. the signal being

demultiplexed by F to form the measurement vector x[n]. This

power spectral density is given by Rχ(z) = H(z)HP(z) =
z+2+z−1. Thus, we have Rχ,0(z) = 2 and Rχ,1(z) = 1+z,

such that that the pseudo-circulant matrix

L(z) =

[
Rχ,0(z) Rχ,1(z)

z−1Rχ,1(z) Rχ,0(z)

]

(29)

agrees with (28). △

The uniqueness of the decomposition in (25) has been

previously unexplored. The matrix Q3(z) matches the left-

singular matrix in the pseudo-circulant SVD in (16), and hence

shares at the least its non-uniqueness w.r.t. to arbitrary pseudo-

circulant paraunitary matrices applied to every subblock of

C(z). Such factors and their parahermitian transposes are

also left- and right-multiplied to the block-pseudo-circulant

L(z), but cancel since they are diagonalisable by the same

paraunitary matrices W (z).

V. DISCUSSION AND CONCLUSIONS

In this paper, we have explored and compared the extension

of two important factorisations, the singular value decomposi-

tion and the spectral decomposition, from ordinary matrices to

matrices of analytic functions. This extension yields a number

of curiosities, such as the need to admit singular values with

sign changes if real-valuedness on the unit circle is to be

maintained. Alternatively, we have followed the suggestion

in [15] to define an SVD with two modifications: complex-

valued singular values, as well as an SVD factorisation such

that paraunitary operations yield a block-diagonal form with

pseudo-circulant subblocks. The latter also ensures that an

analytic SVD exists without the need for oversampling even in

the case the SVD is applied to multiplexed systems. A similar

factorisation including a pseudo-circulant block-diagonal form

of analytic ‘eigenvalues’ rather than a complete diagonali-

sation has been suggested here for the analytic spectral or

eigenvalue decomposition.

Additionally, we have commented on the uniqueness of the

different decompositions, where some factorisations can be

modified by allpass filters or pseudo-circulant systems relating

to allpass functions. While this does not affect the analyticity

of a solution, meaning that an arbitrarily close polynomial

solution can be obtained by delays and truncations [10], it does

impact on its order and therefore computational complexity.

Such ambiguities are therefore important to understand when

attempting to realise algorithmic solutions. While for the

analytic diagonal spectral factorisation algorithms with proven

convergence exist [23]–[25], solutions for the remaining de-

compositions are waiting to be explored. As an initial step,

the complex value SVD with an algorithm based on [26]

has been exploited to determine smooth precoders for MIMO

multicarrier communications systems in [27].
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