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Abstract—Using the commonly employed uniform rectangular
array as an illustrating example, we have recently shown that
the block-term tensor decomposition model provides a natural
representation for the output signal of a multi-dimensional
sensor array structure in the presence of channel multipath.
This allowed us to develop effective and efficient semi-blind
joint channel estimation/data detection algorithms, and, more
recently, we have studied the role of the discrete nature of the
symbol constellation in this context. In this paper, we build on
that work by endowing receivers with the ability to estimate
the number of impinging signals, previously assumed to be a-
priori known. A palette of alternatives in model selection and
detection performance, as well as in computational requirements,
is considered, which includes schemes based on expectation
maximization with different choices of the symbol prior. The
schemes considered are evaluated through simulations at various
noise levels and different constellation sizes and are favorably
compared with the training-only-based solution.

I. INTRODUCTION

Semi-blind joint channel estimation/data detection (JCD)
(see, e.g., [1]) has regained interest in the array signal process-
ing (ASP) community as a means of meeting the requirement
for resource-efficient receiver realization, which is particularly
relevant in massively large multi-user multiple-input multiple-
output (MIMO) systems. Tensor models and methods [2]
provide a suitable solution approach to this problem, given
the inherently multidimensional (m-D) nature of such systems
and the ability of tensor decomposition (TD)-based methods to
recover latent information from the received (Rx) signals in a
sample-efficient manner and with little or no training overhead.
Block-term decomposition (BTD) [3] has seen relatively fewer
applications in ASP compared to other TD models, notably
the canonical polyadic decomposition (CPD) and, to a smaller
extent, the Tucker decomposition (TKD) (see [4] for a brief
overview of the related literature). In BTD, the tensor is
decomposed into a sum of low multilinear rank terms (referred
to as blocks), and this can be seen as an intermediate between
CPD (sum of rank-1 terms) and TKD (only one term of low
multilinear rank). This gives BTD its flexibility and justifies
its wide applicability [5]. Its most common variant comprises

This work has been partly supported by the University of Piraeus Research
Center.

rank-(L,L, 1) block terms and is hence referred to as the LL1
model [3].

It was recently shown [4] that an LL1 representation natu-
rally results when the (base station) receiver is equipped with
a uniform rectangular array (URA) and a number, R, of user
signals arrive through multiple paths, say Lr, r = 1, 2, . . . , R.
Iterative algorithms that wed existing JCD schemes with BTD
approximation were considered and thoroughly evaluated. That
scheme singled out for its simplicity, estimation/detection
performance, and computational and data efficiency combines
a classical ASP algorithm, namely iterative least squares
with projection (ILSP) [6], with what is called in [4] sin-
gular value projection (SVP) and consists of projecting the
channel matrix estimate onto the set of matrices with low-
rank columns to respect the LL1 model. For simplicity, the
vector symbol estimates in ILSP are projected onto the input
discrete constellation in an entry-wise manner, which renders
the algorithm suboptimal and not provenly monotonically
convergent (although such difficulties are rarely encountered
in practice; see [4] for details). Our work in [4] was revisited
in [7] from a Bayesian standpoint to shed light on the role of
the constellation’s discrete nature in such algorithms. ILSP
was given a new interpretation as a heuristic version of
an expectation-maximization (EM) procedure [8], [9] that
places a Gaussian prior on the symbols. Per-user minimum
mean squared error (MMSE) symbol estimation, aided by a
minimum power distortionless response (MPDR) filter [10],
[11], was also considered and shown to have the best detection
performance at all signal-to-noise ratio (SNR) levels.

Both R and the Lrs were, however, assumed to be a-priori
known, an assumption that is generally not valid in practice.
Algebraic methods for LL1 model selection and computa-
tion (e.g., [12], [13]) tend to be computationally expensive
(starting, in the present context of an Nx × Ny URA with
inputs of length Ns, with the computation of the null space
of an NxNyNs× (N2

x +N2
y ) matrix) and only work safely at

high enough signal-to-noise ratio (SNR) levels, which may not
be the case in practical communication systems [13]. Rank-
revealing optimization looks more promising in this respect,
and a preliminary study of such methods in the present context
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is the theme of this paper. A palette of alternatives in model
selection and detection performance, as well as computational
cost, is considered. This includes the ILSP-SVP scheme,
assisted by a singular value decomposition (SVD)-based rank
estimation heuristic, and two EM-based algorithms with rank-
revealing channel prior and two choices of the data prior,
differing in their proximity to the known discrete constellation.
The schemes considered are evaluated in rank recovery and
detection performance and compared in their computational
requirements through simulations at various noise levels and
different constellation sizes.

A. Notation

The superscript ∗ stands for complex conjugation. ◦ and
⊙,⊘ denote the outer product and entry-wise multiplication
and division, respectively. |A|2 means A ⊙ A∗. Diag(x) is
the diagonal matrix with the vector x on its main diagonal,
while diag(A) yields the main diagonal of A as a (column)
vector. The trace operator is denoted by tr(·). ℜ{·} takes the
real part of a complex-valued quantity.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let R far-field sources emit uncorrelated narrowband sig-
nals, which impinge on a uniform xy planar antenna array of
dimensions Nx×Ny . The rth signal arrives through Lr paths
that are assumed to be sufficiently closely spaced compared
to the duration of the symbol so that they all have the same
delay. If the impinging signals, sr ∈ CNs×1, r = 1, 2, . . . , R,
are of length Ns, then the array output can be represented by
an Nx ×Ny ×Ns tensor, expressed as [4]

Y =

R∑
r=1

Hr ◦ sr +W , (1)

where W stands for the zero-mean Gaussian noise, assumed
spatially and temporally white with variance σ2

w. The rth
channel coefficient can be written as Hr = Ax,rDrA

T
y,r,

where Ax,r and Ay,r are the corresponding Nx × Lr and
Ny × Lr steering matrices, respectively, and the path gains
are on the main diagonal of the diagonal matrix Dr. It
is clear that, especially for large-scale arrays, the steering
matrices are generically full column rank, Lr, which implies
that (1) is a noisy decomposition into rank-(Lr, Lr, 1) terms.
Collect all Ax,r’s in Ax ∈ CNx×L̄, with L̄ ≜

∑R
r=1 Lr, and

similarly for Ay,r’s. Let S =
[
s1 · · · sR

]
∈ CNs×R

be the transmitted (Tx) symbol matrix. Then the following
factorization for the transposed mode-3 unfolding holds [4]

Y ≜ YT
(3) = HST +WT

(3), (2)
where H ∈ CNxNy×R represents the combined channel
matrix, with columns vec(Hr), r = 1, 2, . . . , R. With all
Lr = 1, i.e., only line-of-sight transmission, the above reduces
to a rank-R CPD approximation problem.

With known R and Lrs, the discrete-valued nature of S
and the low-rankness of the columns of H can be exploited to
solve (2) for the Tx symbols and the channel [4], [7]. S should
belong to the set F of Ns × R matrices with entries in the
symbol constellation employed, say A = {a1, a2, . . . , aM}
with order M = |A|, while the rth column of H, when

unfolded into an Nx×Ny matrix, should be of rank (at most)
Lr, r = 1, 2, . . . , R. Let L denote the set of NxNy × R
matrices that enjoy the latter property. Then, the above JCD
task can be stated as the following maximum likelihood (ML)
optimization problem

min
H∈L,S∈F

h(H,S) ≜
1

2
∥Y−HST∥2F+

η

2
(∥H∥2F+∥S∥2F), (3)

where a ridge regularizer, with a regularization parameter
η > 0, has been included for ensuring stability. Alternatively,
an EM approach can be taken, as detailed in [7], with an
appropriate prior chosen for the hidden variable S. The above
solution approaches are revisited in this paper in the realistic
scenario of a-priori unknown R and Lrs. Given the relative
robustness of the approximated LL1 model to an overestima-
tion of the Lrs, observed in several application contexts (see,
e.g., [14] and references therein), here only the number, R, of
input signals is estimated, with the Lrs being overestimated
at the same value, Lini.

III. RANK-REVEALING BTD-BASED JCD
The factors in (3) can be identified by alternatingly solving

for S and H while projecting S onto F and H onto L in each
iteration [4]. The former step is generally non-trivial and can
be performed in an exhaustive search manner [6], [8] at a cost
exponential in the number of sources. Instead, relying simply
on entry-wise projection was demonstrated in [4] as a compu-
tationally efficient yet well-performing option. Regarding the
projection onto L, this can be done via an SVP step1, namely
replacing each column of H by the vectorization of the rank-
Lini SVD of its Nx×Ny matricization. Before that, R can be
estimated from the (assumed in non-increasing order) singular
values2 of Y as follows3 [17, Section 3.2]

R̂ = arg min
i=1,2,...,NxNy

σi+1

σi
(4)

The resulting algorithm is tabulated here as Algorithm 1.

Algorithm 1: ILSP-SVP
Data: Y, Lini, η
Result: Estimates of R, H ∈ CNxNy×R, S ∈ CNs×R

1 Estimate R from (4);
2 Initialize H ∈ CNxNy×R;
3 repeat
4 S← YTH∗(HTH∗ + ηIR)

−1;
5 Project S entry-wise onto F ;
6 H← YS∗(STS∗ + ηIR)

−1;
7 Project H onto L via (rank-Lini) SVP per column;
8 until convergence;

To mitigate the exponential complexity of the F-constrained
ML problem, [8] opted to model Tx symbols in the general

1This is somewhat abusing the use of the acronym SVP, which is, strictly
speaking, used in the literature to refer to projected (onto L) gradient descent
iterations aiming at a low-rank matrix that satisfies affine constraints (as in,
e.g., matrix completion) [15].

2Alternatively, from its QR decomposition, as in, e.g., [16].
3The cost function is given by σi+1+σ1

√
i/ϵ

σi
in [17], for a large value of

ϵ, which when set to infinity yields (4).
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MIMO system setting as zero-mean Gaussian random vari-
ables and resort to EM for developing a semi-blind receiver
of affordable complexity and good performance at moderate
to low SNR, high-order constellations or large-scale sys-
tems. Performance improvements were observed in [9] when
entry-wise projections onto F , called “heuristic de-mapping”
therein, were intertwined with the iterations. Interestingly, this
yields ILSP when replacing σ2

w by η and assuming that all
symbols are also a-posteriori uncorrelated of the same power.
[8] also proposed a version of its EM-based channel estimator
that uses a prior for the channel coefficients as well. It is not
difficult to see that this amounts to the well-known Bayesian
principal component analysis (BPCA) method [18], originally
developed as a means of performing probabilistic PCA (PPCA)
that also has the ability of dimensionality selection. In the
present context, the channel prior takes the form

p(H|ΓH) =

Rini∏
r=1

CN (H(:, r)|0, γH(r)−1INxNy ), (5)

where ΓH = Diag({γH(r)}Rini
r=1) and the channel column

precisions γH are to be learned from the data. Those among
them with large (ideally infinite) values will then correspond to
columns that should be dropped, allowing an estimate of R to
be obtained. Furthermore, incorporating an SVP step at each
iteration results in one more candidate scheme for our JCD
task, named here BPCA-SVP and summarized in Algorithm 2.
The diagonal matrix ΓS has on its diagonal the inverse powers

Algorithm 2: BPCA-SVP

Data: Y, Rini, Lini,ΓS ∈ RRini×Rini

Result: Estimates of R, H ∈ CNxNy×R, S ∈ CNs×R

1 Initialize H ∈ CNxNy×Rini , ΓH ∈ RRini×Rini , and σ2
w;

2 repeat
3 Σ← (HTH∗ + σ2

wΓS)
−1;

4 S← YTH∗Σ;
5 ΣS ← σ2

wΣ;
6 ⟨SS⟩ ← STS∗ +NsΣS;
7 ΣH ← (⟨SS⟩+ σ2

wΓH)−1;
8 H← YS∗ΣH;
9 ΓH ← Diag((1Rini

NxNy)⊘ (|HT|21NxNy
);

10 Project H onto L via (rank-Lini) SVP per column;
X̂← HST;

11 σ2
w ←

∥Y∥2
F−2ℜ{tr(YHX̂)}+tr(HHH⟨SS⟩)

NxNyNs
;

12 until convergence;
13 Use ΓH to drop redundant columns of H and

corresponding columns of S;
14 Project S entry-wise onto F ;

of the srs, and can in practice be set to 1
var(A)IRini

. ⟨SS⟩
contains the posterior 2nd-order moments of the symbols. A
first estimate of the noise power can be computed from the
training data and subsequently updated as in Line 11. Note that
soft symbol estimates are used throughout, and hard estimates
are only computed at the end.

To come up with a semi-blind MIMO receiver that both
takes into account the discrete constellation and is computa-

tionally tractable, [11] proposed the adoption of an MPDR
filter [10] to first unmix the sources before performing MMSE
estimation in their noisy versions. The MPDR principle from
ASP [19] suggests filtering the Rx signal to minimize the
power at the output of the filter while preserving the Tx signal
of interest. The rth filter output, say R(:, r), can then be
written as the sum of the corresponding Tx signal, sTr , and
noise plus interference, nT

r , which, for a large number of users,
is well approximated by zero-mean Gaussian:

R(:, r)T =
H(:, r)HΣYY

H(:, r)HΣYH(:, r)
= sTr + nT

r , (6)

where ΣY = (HΓHH + σ2
wINxNy )

−1 is the inverse of
the Rx signal covariance and 1

H(:,r)HΣYH(:,r) equals the
power of R(:, r) [10], [11]. Hence, one can compute the
conditional means of the Tx symbols separately for each
signal and assume their known discrete distribution, which
would otherwise lead to an intractable exponential complexity
detection problem [8]. Including the channel prior from (5) and
inserting the LL1-induced SVP step gives rise to an additional
JCD scheme, presented as Algorithm 3 and henceforth called
MPDR-SVP. ρ contains the probabilities of occurrence of the

Algorithm 3: MPDR-SVP
Data: Y, Rini, Lini,ρ
Result: Estimates of R, H ∈ CNxNy×R, S ∈ CNs×R

1 Initialize H ∈ CNxNy×Rini , ΓS ∈ RRini×Rini ,
ΓH ∈ RRini×Rini , and σ2

w;
2 repeat
3 ΣY ← (HΓSH

H + σ2
wINxNy

)−1;
4 HY ← ΣYH;
5 G← HHHY;
6 Σr ← Diag(1Rini

⊘ diag(G));
7 Σn ← Σr − ΓS;
8 R← YTH∗

YΣr;
9 for m = 1, 2, . . . ,M do

10 Z(:,m, :)← exp
(
|R− am1Ns×Rini

|2 Σ−1
n

)
;

11 end
12 S← (

∑M
m=1 ρmamZ(:,m, :))⊘ (

∑M
m=1 ρmZ(:

,m, :));
13 S2 ← |S|2;
14 Σs ← (

∑M
m=1 ρm|am|2Z(:,m, :

))⊘ (
∑M

m=1 ρmZ(:,m, :))− S2;
15 ΓS ← Diag( 1

Ns
ST
2 1Ns

);
16 ⟨SS⟩ ← STS∗ +Diag( 1

Ns
ΣT

s 1Ns);
17 H← YS∗(⟨SS⟩+ σ2

wΓH)−1;
18 ΓH ← Diag((1Rini

NxNy)⊘ (|HT|21NxNy
);

19 Project H onto L via (rank-Lini) SVP per column;
X̂← HST;

20 σ2
w ←

∥Y∥2
F−2ℜ{tr(YHX̂)}+tr(HHH⟨SS⟩)

NxNyNs
;

21 until convergence;
22 Use ΓH to drop redundant columns of H and

corresponding columns of S;
23 Project S entry-wise onto F ;
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ams. In practice, these can be set to 1
M . It should be noted that

soft symbol estimates are computed and used throughout, as in
BPCA-SVP, however, the knowledge of the input constellation
is incorporated here in the form of the symbol prior. The
posterior probabilities (conditioned on the MPDR output) are
computed and stored in the Ns ×M ×R array Z .

More details on the algorithms and their development are
deferred to the full version of the paper.

IV. SIMULATION RESULTS
R = 3 sources emit at the frequency of 1 GHz M -

QAM signals, which arrive through L = 3 paths each to a
6 × 6 URA with half-wavelength inter-sensor spacings. The
azimuth and zenith angles of arrival are chosen uniformly
at random from (0, π) and (0, π/2), respectively (i.e., at
the “front” of the URA), and the complex path gains are
drawn from the complex zero-mean, unit-variance Gaussian
distribution. R and the Lrs are over-estimated as Rini = 6
and Lini = 6, respectively. Information symbols are preceded
by orthogonal training preambles4 of (the smallest) length
Rini, which allows to account for scaling and permutation
ambiguities and compute a first estimate of H and σ2

w.
Figs. 1(a), (b) show the signal copying performance, in

terms of the bit error rate (BER) as a function of the bit SNR,
of the training-only-based MMSE detector and the detectors
presented previously, for different constellation orders and for
(a large number of) realizations in which all rank-selection
criteria were successful. The superiority of the semi-blind
over the training-only-based approach can be observed in both
cases as the semi-blind receiver extracts channel and hence Tx
signal information also from the Rx signals’ information part.
The deterministic scheme outclasses with low constellation
order (Fig. 1(a)), while the situation reverses with higher-order
(Fig. 1(b)) constellations. This is because, in the latter case,
the distribution of the Tx symbols is closer to being continuous
(Gaussian for BPCA-SVP), which favors their soft estimation.
ILSP-SVP performs better than BPCA-SVP at moderate to
high SNRs, where hard decisions are more reliable.

As Fig. 1(c) demonstrates, it is only at high SNR levels
that the rank selection criterion of (4) can be practical. The
EM-based schemes appear to enable the accurate estimation
of the number of signals even in the presence of strong noise.

The average run-times5 on a computer employing i5-
8500 CPU@3.00 GHz and 8 GB RAM, and using the R2024b
release of MATLAB©, are plotted versus the SNR level in
Fig. 1(d) for the experiment of Fig. 1(b). The time required
to estimate R in ILSP-SVP is included. ILSP-SVP has the
lowest computational cost, followed by MPDR-SVP. There are
a few ways the computational complexity of the latter can be
reduced. These include the use of the matrix inversion lemma
on ΣY and the compression of Y as detailed in [11].

In summary, ILSP-SVP appears to be an effective and
efficient solution with the additional advantage of simplicity.

4Known to be MSE-optimal (see, e.g., [20] and references therein).
5MATLAB’s© svds was used in the SVP steps. More efficient implemen-

tations, including randomized SVD, are, of course, possible.

However, the EM-based schemes are, by construction, able to
jointly select and compute the Rx signal model, which renders
them better suited for real-time implementation.

V. FUTURE WORK

Considering fully Bayesian extensions of the EM-based
schemes presented here, in the vein of variational BPCA [21]
or its equivalent in [22], can be the next step in this work,
possibly accompanied with the adoption of a discretization-
enforcing prior (cf. [23]) as an intermediate between the Gaus-
sian (BPCA) and the ideal discrete (MPDR) priors adopted
herein. The rather heuristic way (via the SVP step) the LL1
structure was enforced can be replaced by a more principled
approach [24], [25] based on a channel prior that explicitly
incorporates the spatial correlation present in practical arrays,
not taken into account in (5). Message-passing variants of
BPCA [26] and MPDR [10] are worth investigating as more
realistic solutions to the large-scale JCD problem.

Orthogonal training sequences were employed in the sim-
ulations for the sake of convenience. This can, however, be
very costly in terms of spectral efficiency, especially when
the number of input signals, and hence the duration of the
training session, is largely overestimated. Shorter preambles,
designed to be “close-to-orthogonal” (e.g., with maximum
incoherence [27]), would thus be preferable in practice and
also need to be tested.

Scenarios involving missing/failing sensors should also be
considered, as well as incremental/online extensions that can
cope with large-scale and/or time-varying (possibly also with
a changing number of signals [28]) systems, reducing the
delay incurred from batch processing of a long sequence of
snapshots [4]. Going from planar to higher-dimensional (e.g.,
3-D) arrays [2] also seems feasible and rewarding.
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