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Abstract—Calibration of uniform linear arrays re-
mains an important task that enables proper functional-
ity of almost all spatial array processing downstream op-
erations. We develop a computationally and statistically
efficient method for blind calibration, i.e., without known
calibration signals, that yields the maximum-likelihood
estimate (MLE) of the gain and phase offset parameters.
We use a computationally lean, but consistent initial
estimator, and refine it via Fisher’s scoring algorithm,
for which we derive the associated Cramér-Rao Bound
(CRB) of the model. Simulation results demonstrate that
our method converges to the MLE, attains the CRB, and
is superior to the recently proposed reduced-maximum-
likelihood optimally-weighted least squares method.

I. INTRODUCTION

Systems equipped with sensor arrays are employed
in a variety of applications, from radar and sonar to
wireless communication and surveillance systems. By
using multiple sensors arranged in a well-designed
geometry, these systems can capture spatial informa-
tion that is essential for tasks such as target detection,
source localization, and interference mitigation.

A critical procedure that strictly enables these capa-
bilities is calibration of the elements in these arrays, a
task that remains a critical challenge in such systems
(e.g., [11, [2]). In practice, effects such as temperature
fluctuations or frequency drift in the receivers can
introduce errors in the model parameters, including
relative gain and phase mismatches across sensors.
These discrepancies can severely degrade system per-
formance, making it necessary to recalibrate the sensor
array on a regular basis, if not prior to each use.

Liu et al. [3] proposed a diagonal weighted least
squares (LS) approach to solve the blind calibra-
tion problem, i.e., without known calibration signals.
Later, Ramamohan et al. [4] addressed this problem
by relaxing and reformulating it into a semi-definite
programming one. In a different line of work [5]-
[7], inspired by Paulraj and Kailath’s approach in [8],
Weiss and Yeredor developed a computationally at-
tractive optimally-weighted LS (OWLS) estimator as a
solution of a system of linear equations from nonlinear
transformations of the measurements. However, these
solutions are suboptimal for a model that is more
accurate in certain settings [7, Sec. IV]. In other words,
since the calibration procedure is not as precisely as
possible, the accuracy of downstream tasks is not the
highest possible. In order to achieve the best possible
system performance—such as in direction-of-arrival
(DOA) estimation—the calibration procedure must be
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Fig. 1: Simplified illustration of our solution approach. By
initializing with the consistent, though suboptimal R-ML-
OWLS solution [7], our proposed iterative solution converges
to the ML estimate, thus guaranteeing asymptotically optimal
performance.

carried out optimally, so as to enable subsequent
spatial inference at the highest fidelity.

In this work, we address this challenge and
develop—to the best of our knowledge—the first opti-
mal blind calibration method for the signal model with
the noise term unaffected from the array calibration
errors. By utilizing the suboptimal solution proposed
in [7]—referred to as the “reduced maximum likeli-
hood OWLS” (R-ML-OWLS)—for initialization, we
develop a statistically reliable iterative method, namely
Fisher’s scoring algorithm (FSA), for the computation
of the maximum likelihood (ML) estimator of the
unknown calibration gain and phase parameters, as
well as of the additional nuisance model parameters.
A simplified illustration of this approach is given
in Fig. 1. We further derive the Cramér—Rao Bound
(CRB) for this model, and validate in simulations
our analytical derivations alongside the asymptotic
statistical efficiency of our proposed method.

A. Notations

Lowercase letters in standard font (e.g., ) and sans-
serif font (e.g., x) denote deterministic and random
scalars, respectively; similarly, x and x represent de-
terministic and random vectors, and X and X denote
deterministic and random matrices, respectively. The
notation Xx,, represents the m-th entry of the random
vector x. We denote by z ~ CAN(0,1) a standard
circularly symmetric complex normal random. The
operators ()T, ()", and (-)~! denote the transpose,
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conjugate transpose, and inverse, respectively, and
Tr(X) is the trace of X € CN*N. Expectation is
denoted by E[-]. We use sgn(-) for the standard sign
function, and Diag(x) for the operator that takes the
vector x and returns a diagonal matrix with x on its
diagonal. Finally, Vg is the gradient with respect to 6,
and 7 (0) is the Fisher information matrix (FIM) of 6.

II. PROBLEM FORMULATION

Consider the presence of N narrowband sources,
whose corresponding emitted signals impinge on an ar-
ray of M sensors. The received signal at each element
of the array is modeled as a superposition of these
N sources, which depends on the direction-of-arrival
(DOA) parameters v = [y g -+ - an] T, where a, is
the DOA of the n-th source, measured relative to the
array’s broadside. We focus in this work on uniform
linear arrays (ULAs), and we assume that the number
of sources satisfies N < M — 1, ensuring sufficient
degrees of freedom for (classical) DOA estimation [9].

Assuming that the received signals are low-pass
filtered and sampled at (at least) their Nyquist rate, the
resulting vector of baseband samples at time instance
t from all M sensors is given by

r[t] = TBAs[t] + w(t] € CM* vie {1,...,T},

M
where the unknown gain and phase offset parame-
ters, namely the goal estimands, are modeled here

as deterministic and are denoted as @ € R{‘f %1 and
¢ € [—m,m)M*1 and accordingly,
W £ Diag(sp) € RM*M, 2
® £ Diag (e/?) € RM*M, (3)

The steering vector matrix in (1) is defined as A :=
A(a) £ [a() a(ag) -+ alay)] € CMXN | where
for a ULA, the n-th steering vector is given by

A _,2md o —
a(ay,) 2 [16 12 sin(an) ... o—J

72“(1\{\_1)‘1 sin(an)] ,
“
and where d € R, and A € R, are the array sensor
spacing and the signals wavelength, respectively. We
assume that s[t] ~ CN(0,Rs) is a temporally inde-
pendent, identically distributed (iid) process with an
unknown diagonal covariance matrix Ry € RM*M,
Similarly, we assume that w[t] ~ CN(0yr,0215,) is
iid, and is statistically independent of s[t]. As a result,
the received signal is also circular complex normal,

I‘[t} N(/’./\/’(01\/[,1:{9)7 Vite {1,...,T}, (@)

where
Ro = E[r[t]r[]"] ©6)
= UdARA"®HOM 1+ 521, (7
L2 YPCP*W + 021y € CM*XM (g)
and C = AR(AH e CM*M i3 a Hermitian

Toeplitz matrix since A is a Vandermonde matrix.
Note that since C is Hermitian Toeplitz, it is com-
pletely characterized by its first row, denoted as ¢ =
[C11 C1a -+ C1ar])T € CMX1, for which we define

c2p+yLeCM, ©)

where p € RM*! and ¢« € RM*! denote its real and
imaginary parts, respectively. The covariance matrix
(6) is denoted as Ry, with subindex 6, to emphasize
its parametric structure with respect to the unknown
model parameters, collected into the vector

92 [¢T¢TPTLTJV2V]T c RUM-3)x1_ (10)

The total number of real-valued parameters is 4M — 3,
which are:

o The real part vector p = [p; - -- pas]T, contribut-
ing M unknown parameters;

o The imaginary part vector ¢ = [¢1 - --tp/]", with
t1 fixed to zero since Cy; is real, contributing
M — 1 unknown parameters;

o The phases vector ¢ = [¢p1---pp]', where
¢1 and ¢o are fixed to zero, without loss of
generality, due to the rotational ambiguity of the
DOA:s, contributing M — 2 unknown parameters;

o The gains vector ¥ = [¢); - - -1bps] T, where with-
out loss of generality ¥y = 1 as a reference,
contributing M — 1 unknown parameters; and

« A single (nonnegative) real-valued parameter o2,
namely to the noise variance.

The problem we address in this work is as fol-
lows: Given the statistically independent measure-
ments {r[t]}7_, whose (identical) distribution is pre-
scribed by (5), the task is to estimate the unknown
calibration parameters {1, ¢}. Note that Rg, which
depends on these parameters, fully characterizes the
second-order statistics—and hence the distribution—
of {r[t]}Z_,. Thus, estimating @ yields Rg, which can
then be used for subsequent inference tasks.

A. Maximum Likelihood Blind Calibration

Given the signal model (5), we now formulate the
ML estimation problem for blind calibration. For 7'
independent snapshots {r; := r[t]}~_,, the likelihood
of all T snapshots is the product of the individual
likelihoods, given by

L(O\rl,...
T

7rT)

—1R,'r) . (1D)

S | [ S
= /(2m)M det(Ro) 2

Taking the natural logarithm of (11), multiplying by
1/T, omitting terms independent of €, and using

T
> fRg'n 2 7-Ti(Rg'S), (12)
t=1

a T . .
where S = %thl r;r! is the sample covariance

matrix, we obtain the (constants-free) normalized log-
likelihood

L(O|r,...,rr) = —Flog(det(Rg)) — Tr (R;ls) .

(13)

Maximizing (13) with respect to € yields the ML
estimate (MLE),

~

0 = arg max L(O|r,...rp),
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which in particular provides asymptotically efficient
estimators of 1, ¢ for blind calibration of the array.’

III. PROPOSED CALIBRATION ALGORITHM

In Subsection III-A below, we describe FSA, which
we use in our proposed method to iteratively increase
the (normalized) log-likelihood function. Of course, as
in most nonlinear, nonconvex optimization problems,
a key challenge with using a gradient-based method
is determining an appropriate initial estimate that (at
least typically) lies in the basin of attraction of the
MLE. In Subsection III-B, we explain why the R-
ML-OWLS [7] serves as such an initial estimate. Our
complete method is presented in Algorithm 1. Once 6,
the MLE of @ is obtained, @) and ¢ can be used for
optimal calibration of the array.

A. Fisher’s Scoring Algorithm

In order to find the estimate @ that maximizes
L = L(6 | ry,...,rp), namely the MLE, one
can employ a Newton—Raphson-type iterative scheme.
FSA is such a convenient and theoretically justified
option [10], where the exact Hessian is replaced by
the FIM. Specifically, at the k-th iteration, the update
rule of FSA is given by (e.g., [11, Eq. (7.5)])

-1
oUtD = 9" + [I(o(k))} v9£(0) |9=9(k> J

14)
where VgL'(G) is the gradient of the normalized log-
likelihood with respect to @ and Z(6) is the FIM,
which are derived in the Appendix, both evaluated in
(14) at the current estimate 6(*), By iteratively apply-
ing this update, the algorithm converges to a stationary
point of the likelihood. However, without proper ini-
tialization, it may (and most probably) converge to a
local maximum that is not the global optimizer, which
does not correspond to the MLE. To mitigate this risk,
we propose the following initialization, designed to
facilitate convergence to the MLE.

B. Statistically Consistent Initialization

Although the R-ML-OWLS estimator proposed in
[7] is not exploiting all the available data, and is there-
fore suboptimal—and in particular, not the MLE—for
the signal model (1), it is nevertheless a consistent
estimator. Moreover, it has a simple analytical closed-
form expression [7, Eq. (45)]. Hence, it can serve as an
initial solution for FSA that is guaranteed to approach
the true value of 6 as T increases. Consequently, as T’
increases, it is likely that this initial solution will reside
in the basin of attraction of the sought after MLE.
We therefore argue that the R-ML-OWLS suboptimal
estimator is a “good” initial solution, as empirically
demonstrated in Section V.

IV. VALIDATION OF ANALYTICAL DERIVATIONS

We now empirically validate our derivations of the
CRB and the gradient of the log-likelihood, given
in the Appendix, using FSA. Specifically, for each

'We assume that all regularity conditions regarding standard ML
estimation are met, and in particular that the model is identifiable.

Algorithm 1: R-ML-OWLS-initialized FSA

Input: {r,}7 ,, convergence tolerance € € R,
maximum number of iterations K € N
Output: The estimate @, which includes v, ¢
1) Compute the sample covariance matrix:

1 T
E H
S(-Tt:1rtl’t

2) Obtain the R-ML-OWLS [7] estimate of 0, set
it as the initial estimate (9, and set k < 0.
3) While ||[8%) — 9—1| > ¢ and k < K,,, do:
a) Compute VoL ()| _g (., and Z(6™) (see
(20) and (27), respectively, in the Appendix).
b) Update:

-1
0D 0™+ [2(6W)| VoL (6) oy

¢) Increment k < k + 1.
4) Return 6 « 05,

unknown 6;, the CRB is given by the (7,7)-th entry
of Z71(6). We conduct 10> Monte Carlo (MC) trials,
compute the parameter-wise empirical square errors,
and compare them with the analytic expressions of
their respective CRBs.

For validation of our derivations only, we initialize
FSA at the true parameter values, leveraging the fact
that for any finite sample size 7', the MLE is almost
surely not equal to the true parameter vector.> Let L €
N denote the number of MC trials. For each parameter
0;, we define its estimated squared error (ESE) as

ESE(5) & 1 i(e 3’

(=1

(15)

where é\[f] denotes the estimate of 6; in the /-th MC
trial. We then aggregate these ESEs into an average
squared error (ASE),

4M -3

> ESE(6:),

and compare it with the average of the diagonal ele-
ments of the inverse FIM, termed here as the average
CRB (ACRB),

1

ASE(9) £ 03

(16)

4M -3

> (o)) .

(23

ACRB(0) £

T AM —3 an

As shown in Figs. 2 and 3, the ASE closely matches
the ACRB,? confirming both the validity of our gra-
dient and FIM computation, and the asymptotic effi-
ciency of the estimator, when properly initialized.
We have thus established the CRB for model (1),
i.e., a lower bound on the mean squared error (MSE)
of any unbiased estimator of 6. This bound serves
as a benchmark against which all subsequent blind

2When the MLE is consistent, it converges in probability to the
true parameter vector in the limit 77 — oco. However, for our signal
model (and specifically with complex normal noise), for any finite
T we have P(6 # 6) = 1.

3Except at extremely low SNR, as expected.
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Fig. 2: The ASE and ACRB versus SNR for T' = 103. Already from
—15 dB the average of estimated MSEs of our proposed estimators
coincides with the average of the corresponding CRBs.
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Fig. 4: ASE(4) versus M for T = 3000 and SNR = 10 dB. A
significant gain in the MSE relative to the R-ML-OWLS is observed.
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Fig. 3: The ASE and ACRB versus 7" for an SNR level of 10dB. Our
method reliably converges to the MLE, and already for a moderate
sample size of 7" = 30 achieves the CRB.

calibration methods can be compared, and indicates
the best achievable estimation accuracy.

V. SIMULATION RESULTS

We now evaluate the proposed blind calibration
method, where we consider model (1), with (5), in
a finite-snapshot representative scenario with:

o N = 3 sources;

« Sensor array sizes M € {5,6,7,8,9,10};

e T'= 3000 snapshots; and

« SNR = 10dB.

The base gains and phases for the smallest array size
(M = 5) are Ypase = [1 1.3 1.1 0.7 2.2] and @pase =
1551005 11 — 8], respectively. For arrays with more
than M = 5 elements, these vectors are repeated and
truncated to match the actual sensor dimension. We fix
the source angles at o = [—35° — 73° — 28°]T.

In our simulation, we vary the number of sensors
M from 5 to 10 and compute the average MSE for
both the gain and phase parameters over L = 500
MC independent trials. Estimates are obtained using
both the suboptimal R-ML-OWLS and our proposed
method. The ASEs for @ and ¢ are defined as

L M
1 ~[(] 2
ASE(9h) £ ————— P =),
Tor 1) 2 2 (0 =%
1 L M - )
ASE(¢) & -+ o — )
L(M - 2) ; ; ( )
Figure 4, presenting ASE(4)) vs. M, shows that our
proposed method attains the CRB, and significantly

Fig. 5: ASE(¢) versus M for T' = 3000 and SNR = 10 dB. While
R-ML-OWLS approaches the CRB only for M > 9, our method
yields optimal calibration performance even for M = 5.

improves upon R-ML-OWLS. Additionally, R-ML-
OWLS gradually approaches the CRB as M increases,
which aligns with the discussion on the regime where
M — oo in [7, Section IV]. Likewise, in Fig. 5 our
method outperforms R-ML-OWLS in estimation of the
phase parameters, with R-ML-OWLS converging to
the CRB only for M > 9. Moreover, our method
essentially reaches the CRB for both gains and phases,
confirming its optimal performance (i.e., asymptotic
efficientcy), and its superiority over R-ML-OWLS.

VI. CONCLUDING REMARKS

We derive a statistically reliable algorithm for the
computation of the MLE for blind calibration of
(commonly used) uniform linear arrays. Our method
utilizes the previously proposed, suboptimal R-ML-
OWLS estimator, and successively refines it via FSA,
which converges to the MLE. Our derivation include
the corresponding CRB, whose benefit in our context
is twofold: for FSA, and as a benchmark for the best
attainable performance in terms of MSE among all
unbiased estimators. Simulations corroborate that the
proposed method essentially attains this bound.

Extensions to more general array geometries
and broader signal models are considerably more
challenging—at least analytically—and constitute an
attractive path for future research. As modern array
processing is increasingly embracing novel configura-
tions, there is a growing need for innovative methods
to effectively address the resulting complexity.
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VII. APPENDIX

For the sake of brevity, let us denote Rg as R. The
core idea of our derivation is based on the following

relation: for 4,5 € {1,..., M},
Co? + 02 i
I A T
Cijih;e’#i=%)  otherwise
where we recall
L =—7log(det(R)) —Tr (R™'S), (19

namely £ is a function of R and S only. Taking the
derivative w.r.t 65 and using the chain rule,
M

OL ORye,
20
86k Z 8R4152 00y’ 0)
£y,lo=
Using the following relations (e.g., [12]-[14])
0log (det(R)) 1
——==(R77) .. 21
o = (R, ey
dTr (R™'S)
— " —_(R7ISR7Y) 22
Ty ( )i @)
the derivative of £ with respect to R;; is:

oL

— =——_(RY. +(R
We now move on to compute the partial derivatives

of the covariance matrix R € CM*M with respect to

five groups of parameters, in the order described in
(10). Recall that

R =T®CP*V¥ + 521y,

-1 -1
SR™) .

(23)

where C is Hermitian Toeplitz with its first row is
determined by {py} and {tx}.

1) Gradient with respect to the gain parameters:
For any m € {2,..., M},

Ciflbmithy + Omytpile? P =%) i j

377/Jm: Ciiti t=J]=m
0 otherwise.
(24)

Here, ,,,; denotes the Kronecker delta.
2) Gradient with respect to the phase parameters:

For any m € {3,..., M},
Cijthinpie? P 0D m =i #
ORi; _ 2(¢i=0;) L (25
O —)Cijthij %) m=j #i (25
0 otherwise
3) Gradient with respect to py:
ORy _ Jwivie? @) fi—jl = [k —1]
Ipr, 0, otherwise.

4) Gradient with respect to v: Similarly, ¢y, is the
imaginary part of Cyj, whose effect on R resembles
pr but includes a factor of +). Concretely, for k €

{2,...,.M}:
ORy;  [gsen(j — )@= |i—j|=|k — 1]
ou, |0 otherwise.

The sgn function appears due to the conjugate sym-
metry property of the matrix R.

5) Gradient computation with respect to o2: For

the noise variance o2,
R, OR
— =0;; = —= =1I. 26
902 ~ il 7 gz =l (26)

A. Derivation of the FIM

Since r[t] is an iid zero-mean circular complex
normal process with covariance Ry, ie., r[t] ~
CN (011, Re)., the (k, £)-th entry of the FIM takes the

form [15, Eq. (5.22)]:
_10Rg _ _ 6R9>
_ 1 9he 1 0ve
(Z(0)),,, =Tr (Rg 6, R,y 28, )

Since we have computed all the partial derivatives of
the covariance matrix Rg with respect to each of the
unknowns, namely 6; for each 1 <1¢ < 4M — 3, each
of the elements of the FIM is readily given based on
these expressions.
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