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Abstract—We present improved versions of two algorithms
for blind source separation in the case where there are fewer
sensors than sources. These methods rely on computing the
decomposition of an auxiliary tensor. As generating the auxiliary
tensor is computationally expensive, we propose an alternative
methodology that only computes a reduced version of the tensor,
which moreover holds the most reliable part of the information.
Additionally we introduce state-of-the methods for computing the
tensor decomposition, which are new in independent component
analysis. Eventually, we arrive at a reliable scheme that only
requires the computation of a limited number of partial matrix
eigenvalue decompositions.

Index Terms—Higher-order tensor, canonical polyadic decom-
position (CPD), higher-order statistics, independent component
analysis (ICA), underdetermined mixtures.

I. INTRODUCTION

Independent component analysis (ICA) [1], or blind source
separation (BSS), aims to identify a set of sources based only
on measurements of the simultaneously received signal com-
binations. This problem can be represented by the following
linear mixture model

x = As+ n. (1)

Here, the stochastic vector s ∈ CR represents R unknown
source signals. The mixing matrix A ∈ CJ×R, which is a
priori unknown, characterizes how the source signals are com-
bined to produce the J multichannel observations represented
by the stochastic vector x ∈ CJ . Lastly, n ∈ CJ denotes
additive noise on the observations.

The goal of ICA is now to estimate the source signals s
and/or mixing matrix A from the observations x in (1), as-
suming that the sources are statistically independent from one
another. In the overdetermined case, meaning that there are at
least as many sensors as signals, or J ≥ R, the sources can be
approximately separated by left multiplying the observations
with the pseudo-inverse of the mixing matrix estimate. In the
underdetermined or overcomplete case, meaning that there are
fewer sensors than signals, or J < R, this no longer holds.
In this case, for any observational sample xt, there exists an
affine variety of dimension R−J with possibly corresponding
source samples st, satisfying xt = Ast. This being said, the
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mixture matrix and source distributions are still unique under
mild assumptions [2]. Under such conditions, estimation of the
mixing matrix itself is an overdetermined problem, even if the
underlying ICA problem is underdetermined. From this mixing
matrix estimate, the sources may then be separated using
probabilistic tools [3], or by exploiting source properties such
as sparsity of signals or finite alphabets. Therefore, estimation
of the mixing matrix first, and sources second, remains an
important strategy also for underdetermined ICA.

In this paper, we will focus on the direct estimation of
the mixing matrix from observed samples, by means of the
extension of two algebraic methods for underdetermined ICA.
These methods are based on the decomposition of a higher-
order tensor into a minimal sum of rank-1 terms, via the
canonical polyadic decomposition (CPD) [4]. We specifically
consider the Second-Order Blind Identification of Underde-
termined Mixtures (SOBIUM) algorithm [5], and the Fourth-
Order-Only Blind Identification (FOOBI) algorithm [6]. These
methods compute certain statistics of the observations and
construct a tensor based on them, which admits a CPD that
reveals the underlying mixing matrix. Both methods crucially
rely on the computation of the nullspace of a large matrix to
obtain an auxiliary tensor that is subsequently decomposed.
Since the size of this matrix scales as O(R2J4), this compu-
tation quickly becomes computationally very expensive. We
propose an alternative methodology where only a subspace
of this nullspace is used, which contains the most relevant
information for the problem. This would not only lower the
cost of computing the nullspace, it also results in a reduced
version of the auxiliary tensor, making the decomposition of
the latter cheaper as well. Furthermore, we introduce current
state-of-the-art methods for CPD computation, in order to
more accurately and efficiently compute the decomposition for
the reduced auxiliary tensor.

The paper is laid out as follows. Section II introduces
the statistical quantities used in the SOBIUM and FOOBI
algorithms, detailing how their structure can reveal the mixing
matrix, and explains how this matrix can effectively be com-
puted via the CPD of an auxiliary tensor. Section III discusses
how a reduced version of this tensor may lead to more efficient
computation without significant loss of accuracy. Experimental
results based on simulation data are discussed in section IV.
Section V finally contains our conclusions and future work.
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Notation: We denote scalars by lower case italic (a),
vectors by bold lower case (a), matrices by bold upper case
(A), and tensors by calligraphic upper case (A). We use capital
italic to denote upper bounds of index values (i = 1, 2, . . . , I).
Entries of of vectors, matrices and tensors are written with
indices in subscript, and are often denoted as scalar represen-
tations ((a)i = ai, (A)ij = aij , (A)ijk = aijk, . . .). The jth
column of a matrix A is then denoted as aj .

The Khatri–Rao product ⊙ of two matrices A and B with
L columns is defined by (A ⊙ B)(i−1)L+j, l = ail bjl. The
outer product ⊗ of an arbitrary number of vectors a,b, c, . . .
is defined by (a ⊗ b ⊗ c ⊗ · · · )ijk... = ai bj ck · · · .

Finally, we denote with ·T, ·H, ·∗ the transpose, conjugate
transpose and complex conjugate respectively, and ∥ · ∥ repre-
sents the Frobenius norm.

II. PROBLEM DERIVATION

In this section we briefly summarize the SOBIUM and
FOOBI approach. We refer to [5], [6], [7] for further details.

A. SOBIUM

The SOBIUM algorithm estimates the mixing matrix based
on second-order statistics [8]. To this end, it makes the
assumption that the sources are individually correlated in
time, in addition to being mutually uncorrelated. The spatial
covariance matrices of the noiseless observations xt then
satisfy Ck = E{xt x

H
t+τk

} = A ·Dk ·AH, for different delays
τk, where the Dk = E{st sH

t+τk
} ∈ CR×R are diagonal,

k = 1, . . . ,K. Define now the matrix D ∈ CK×R by
(D)kr = (Dk)rr. If we construct the matrix C ∈ CJ2×K

such that (C)(i−1)J+j, k = (Ck)ij , it then it holds that

C = (A⊙A∗) ·DT. (2)

Let the reduced SVD of C now be given by

C = U ·Σ ·VH (3)

with U ∈ CJ2×R, Σ ∈ RR×R, V ∈ CK×R, and define the
matrix H = U · Σ ∈ CJ2×R. Under the assumption that
A⊙A∗ and D are of full column rank, implying that R ≤ J2

and R ≤ K, it follows from (2) and (3) that

A⊙A∗ = H ·W (4)

for some nonsingular matrix W ∈ CR×R. In this way, the
problem of estimating the mixing matrix A from C can be
translated to finding the matrix W that satisfies (4).

B. FOOBI

The FOOBI algorithm estimates the mixing matrix based on
fourth-order statistics [8]. Consider the fourth-order cumulant
tensor Cx ∈ CJ×J×J×J of the noiseless observations, whose
elements are given by cxijkl =

∑R
r=1 κraira

∗
jra

∗
kralr, where

κr is the kurtosis of the rth source. Define now the diagonal
matrix C̃s ∈ RR×R by c̃srr = κr. If we construct the matrix
Cx ∈ CJ2×J2

such that (Cx)ijkl = (Cx)(i−1)J+j, (k−1)J+l, it
then holds that

Cx = (A⊙A∗) · C̃s · (A⊙A∗)H. (5)

Since Cx is Hermitian by (5), it admits a symmetric eigenvalue
decomposition, given by

Cx = U ·Σ ·UH (6)

with U ∈ CJ2×R and Σ ∈ RR×R. Define now the matrix
H = U · Σ 1

2 ∈ CJ2×R. Under the assumption that A ⊙ A∗

is of full column rank, implying R ≤ J2, it follows from (5)
and (6) that

(A⊙A∗) · (C̃s)
1
2 = H ·W (7)

for some nonsingular matrix W ∈ CR×R. This again defers
finding the mixing matrix A to finding this matrix W.

C. Auxiliary CPD problem

From (4) and (7), we have obtained that right multiplication
of H with a corresponding matrix W equals A ⊙ A∗, up
to scaling. Let the matricization of the rth column vector be
defined as mat((A⊙A∗)r)ij = (A⊙A∗)(i−1)J+j, r, then we
see that mat((A⊙A∗)r) = ar a

H
r adheres to a rank-1 structure,

r = 1, . . . , R. This suggests that we find W by imposing every
column of H · W to have rank-1 structure. To identify this
structure, we introduce the ”rank-1 detecting map”

Φ : (X,Y) ∈ CI1×I2 ×CI1×I2 → Φ(X,Y) ∈ CI1×I2×I1×I2

with Φ(X,Y)ijkl = xij ykl + yij xkl − xil ykj + yil xkj

which has the property that Φ(X,X) = O if and only if
X is of rank at most one. Define now the matricizations
Hs = mat(hs) ∈ CJ×J as before, and define the tensors
Pst = Φ(Hs,Ht) ∈ CJ×J×J×J , s, t = 1, 2, . . . , R. It can
be shown [6], [7] that, assuming the tensors Φ(asa

H
s ,asa

H
s )

are all linearly independent, there exist R linearly independent
symmetric matrices Mr ∈ CR×R such that

R∑
s,t=1

(Mr)st Pst = O. (8)

Moreover, the matrices Mr satisfy Mr = W ·Λr ·WT, where
the matrices Λr ∈ CR×R are diagonal, r = 1, . . . , R, and
W is the matrix we wish to compute. In other words, by
solving the linear system (8) for the matrices Mr, we obtain
a simultaneous matrix diagonalization problem from which we
can find the desired matrix W. This problem can equivalently
be interpreted as the CPD of an auxiliary third-order tensor.
To this end, define the matrix Λ ∈ CR×R by (Λ)ri = (Λr)ii.
If we now construct the tensor M ∈ CR×R×R by stacking
the Mr matrices frontal-slice-wise, it adheres to the CPD

M =

R∑
r=1

wr ⊗ wr ⊗ λr (9)

which we denote as M = JW,W,ΛK. By computing the
frontal slices Mr via (8) and solving the associated CPD (9),
we can thus retrieve the matrix W. We can then compute
H · W, which equals A ⊙ A∗ up to scaling by (4) and (7).
This allows us to estimate the columns ar of the mixing matrix
from mat((H ·W)r) through best rank-1 approximation.
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III. REDUCED TENSOR COMPUTATION

Due to the symmetry of the matrices Mr and the fact that
Pst = Pts, we can rewrite (8) more compactly as

R∑
s=1

(Mr)ss Pss + 2

R∑
s,t=1; s<t

(Mr)st Pst = O. (10)

If we then place the entries of Mr in some order into a
row vector mr ∈ CR(R+1)/2, and stack vectorizations of
the tensors Pst columnwise in the same order into a matrix
P ∈ CJ4×R(R+1)/2, we can write (10) as the linear system
P·mr = 0, from which the R matrices Mr may be computed.
In real-world applications where noise is present on the obser-
vations x, the matrices H obtained from the estimated statistics
might not exactly satisfy (4) and (7), and this linear system
might not exactly admit an R-dimensional solution space.
In this case, we can approximate the linearly independent
solutions by the R right singular vectors corresponding to the
R smallest singular values of the matrix P. For convenience,
we will enumerate these singular vectors in reverse order,
meaning that m1 and the associated symmetric matrix M1

correspond to the smallest singular value σ1, and so on.
We can at this point use the singular values σr as a measure

of the quality of their associated solution matrix Mr. If σr is
very close to 0, it is very close to being in the nullspace of
the noisy matrix P, and thus likely to be close to a noiseless
solution. Such matrices Mr will contain relevant information
for the estimation of W. On the other hand, if σr is not close
to 0, we expect its associated Mr matrix to not provide much
added information. We therefore propose to only consider a
subset of RM < R matrices Mr, corresponding to the RM

smallest singular values σr that are sufficiently close to 0. We
then obtain the reduced tensor M(RM ), consisting of only the
first RM frontal slices of M. In this approach, (9) reduces to

M(RM ) =

R∑
r=1

wr ⊗ wr ⊗ λ(RM )
r = JW,W,Λ(RM )K

where Λ(RM ) is a reduced version of Λ, containing only
the first RM rows. In the noiseless case, this CPD will still
exactly retrieve the matrix W if no two columns λ

(MR)
r

are proportional, which is generically satisfied if RM ≥ 2
[9]. In the noisy case, exclusion of frontal slices with larger
corresponding singular values should not lead to a significant
reduction in accuracy for the estimation of W. As a matter of
fact, this may speed up the identification process significantly.
Because the computation of a right singular vector of a tall
matrix with m rows and n columns has a complexity of
O(mn2) [10], the cost of computing any matrix Mr from
P scales as O(J4R4). Computing only RM < R of these
matrices then accordingly reduces the cost by a factor R/RM .
Since the matric P ∈ CJ2×R(R+1)/2 is much larger in size
than the auxiliary tensor M ∈ CR×R×R, and the reduced
auxiliary tensor M(RM ) ∈ CR×R×R is even smaller, we
obtain a highly significant reduction of the overall complexity.

Table I shows the outline of the reduced tensor decom-
position scheme for both SOBIUM and FOOBI as described

above. We will refer to this as algorithm I. The actual source
separation happens in the computation of the CPD of M,
in step 6 of the algorithm. Methods for CPD computation
are generally optimization-based. A popular choice is the
Alternating Least Squares (ALS) algorithm, since it is quite
intuitive and allows for easy implementation. However, this
method only achieves linear convergence at best. We propose
the use of a Nonlinear Least Squares (NLS) algorithm [11]
for CPD computation. This method is guaranteed to converge
and achieves up-to-quadratic asymptotic convergence. An im-
portant part in realizing good performance for optimization is
the use of an adequate initialization strategy. One options is
to just initialize randomly, but then all the work is left to the
optimization method. The most common choice for effective
initialization is the Generalized EigenValue Decomposition
(GEVD) algorithm [12], which uses a simple scheme based on
the eigenvalue decomposition of a pair of frontal slices of the
tensor. Here, we propose the use of a recent extension of this
method, the Generalized EigenSpace Decomposition (GESD)
algorithm [13]. This method is more robust than GEVD, as it
does not rely on a single pair of frontal slices, but combines
information obtained from different pairs of slices. Moreover,
given such a pair of slices, it only extracts the information
that can reliably be estimated from it. Consequently, GESD is
somewhat more expensive than GEVD, though it produces a
higher-quality initialization that in turn reduces the cost of the
overall CPD computation. The use of such advanced methods
is new in the setting of ICA.

TABLE I: Reduced Tensor Underdetermined ICA

SOBIUM
1. Estimate covariance matrices Ck and stack in C

2. Compute SVD C = U ·Σ ·VH; H = U ·Σ
FOOBI

1. Estimate covariance tensor Cx and matricize to Cx

2. Compute EVD Cx = U ·Σ ·UH; H = U ·Σ
1
2

Auxiliary CPD
3. Compute Pst = Φ(Hs,Hs), 1 ≤ s < t ≤ R, and stack in P

4. Extract RM right singular vectors mr of P with small σr

5. Form matrices Mr and stack in M(RM )

6. Compute CPD M(RM ) = JW,W,Λ(RM )K; T = H ·W
7. Estimate ar by best rank-1 approximation of mat(tr), r = 1, . . . , R

IV. EXPERIMENTAL RESULTS

We test the performance of algorithm I using synthetic
data for the simulation of source signals and observations.
We consider R = 6 sources received by a uniform circular
array (UCA) of radius Ra with J = 5 identical sensors. We
assume free space propagation such that the entries of the
mixing matrix before normalization are given by

ãjr = exp (2πι(xj cos(θr) cos(ϕr) + yj cos(θr) sin(ϕr)))
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where ι is the imaginary unit, xj = (Ra/λ) cos(2π(j−1)/J),
yj = (Ra/λ) sin(2π(j − 1)/J), and Ra/λ = 0.55. The
directions-of-arrival (DoA) of the sources are given by

θ1 =
3π

10
, θ2 =

3π

10
, θ3 =

2π

5
, θ4 = 0 , θ5 =

π

10
, θ6 =

3π

5

ϕ1 =
7π

10
, ϕ2 =

9π

10
, ϕ3 =

3π

5
, ϕ4 =

4π

5
, ϕ5 =

3π

5
, ϕ6 =

3π

5
.

The mixing matrix is then obtained by normalizing each
column of Ã with respect to its Frobenius norm. The sources
are unit-variance QAM4 in baseband, implying that they take
their values equally likely in the set {±1/

√
2 ± i/

√
2}. In

the case of SOBIUM, we consider multipath signals, ensuring
autocorrelation of the sources by applying random filters of
length 51 with complex standard normally distributed coef-
ficients. Additive zero-mean complex Gaussian noise is then
added to the observations. Unless stated otherwise, we use
10000 samples with a signal-to-noise ratio (SNR) of 20dB.

Algorithm I was implemented in Matlab using the Tensorlab
package [14], based on the original code for SOBIUM and
FOOBI from Tensorlab+ [15], [16]. In the case of SOBIUM,
we use K = 31 covariance matrices with lags {0, 1, . . . , 30}.
For the CPD computation in step 6 of the algorithm, we
compare 1) Simultaneous Generalized Schur Decomposition
(SGSD) [17] initialized with a Generalized Schur Decomposi-
tion (GSD) of the first two frontal slices M1 and M2, against
2) the NLS algorithm initialized with GESD, also obtained
from Tensorlab+. The first option was used in the original
implementation of SOBIUM and FOOBI, while the second
option consists of state-of-the-art methods. For both SGSD
and NLS, we use a function value tolerance of 10−9, all other
parameters use default values.

Performance of the algorithm is measured in terms of
execution time and accuracy, for which we use two met-
rics. The first measures the error on M(RM ) and is defined
as ϵM =

∥∥M(RM ) − JŴ1,Ŵ2, Λ̂RM
K
∥∥/∥M(RM )∥, where

Ŵ1,Ŵ2, Λ̂RM
are the computed factors of the reduced aux-

iliary tensor. The second measure the error on A and is defined
as ϵA = ∥A− Â∥/∥A∥, where Â is the optimally scaled and
permuted mixing matrix estimate. We conduct Monte-Carlo
experiments where the mean is taken over 100 runs.

Figure 1 shows the performance of the FOOBI version of
algorithm I as a function of the maximal singular value σr

of the frontal slices Mr that are kept to construct M(RM ),
where we always keep at least three slices. The top-left plot
shows the distribution of the R = 6 minimal singular values
of the normalized matrix P/∥P∥. We can see here that these
singular values exhibit heavy outliers towards larger values
or r. The remaining plots show the execution time t for
computing the auxiliary CPD as well as the errors ϵM and
ϵA, both after initialization (dashed lines) and after further
optimization (full line). We see that the execution time of
GESD is stable and overall quite fast. The comparison to
SGSD in this setting is not entirely fair as this method benefits
from highly efficient built-in Matlab functionality. In terms of
the error on the auxiliary CPD, we can see that it tends to

increase with the singular value threshold, as more frontal
slices Mr are used. This is because only a row is added
to the third factor matrix of the CPD to capture a whole
additional matrix slice of the noisy tensor M(RM ), making
the decomposition less exact. This is further amplified by the
fact that the added slices are of decreasing quality. We also see
that GSD initialization on its own is not sufficient to produce
an adequate estimation of W from the CPD approximation
based on only two slices. This is mirrored in its ability to
estimate the mixing matrix. Looking at the error on the mixing
matrix, we can see that virtually no accuracy is gained by
including frontal slices Mr with corresponding singular values
larger than about 0.025. This value nicely excludes most of the
heavy singular value outliers, and substantiates the idea that
corresponding matrices Mr, which are not sufficiently close
to the nullspace of P, do not aid in the estimation process.
Furthermore, we note that GESD is already able to compute
a sufficiently accurate CPD approximation, such that little
accuracy is gained through further optimization. The relatively
high cost of this optimization procedure can thus be avoided.
Notice further that the top-right figure shows only part of the
computational time, since significant speedup of algorithm I
as a whole is realized when only computing fewer slices Mr

from P, as explained in section III.
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Fig. 1: Performance of FOOBI as a function of the maximal
singular value σr for which a slice Mr of M is computed.

Figure 2 now shows the accuracy of the SOBIUM version
of algorithm I as a function of the number RM of frontal slices
used to construct M(RM ). The trends here are similar as for
FOOBI. It is now more clear that NLS is able to consistently
compute the best approximation of the auxiliary CPD, if only
slightly. For the error on the mixing matrix, we can see that
essentially no accuracy is gained when using more than four
frontal slices Mr. Even compared to using three slices, no
significant accuracy is gained, as an overall error difference
of 0.5dB only amounts to a factor 1.122. We see again that
GESD performs about as well as the optimization methods.
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Fig. 2: Performance of SOBIUM as a function of the number
RM of frontal slices Mr of M.

Figure 3 finally shows the accuracy of the SOBIUM version
of algorithm I for SGSD and NLS as a function of the SNR
on the observations, with either all R = 6 frontal slices Mr or
only RM = 3 slices used to construct M(RM ). As expected,
both errors decrease as the SNR increases, up to an SNR value
of about 10dB, after which they stagnate as the statistical error
of estimating the covariances from the observations dominates
the accuracy. We can see that the error on the auxiliary CPD
is about 5dB lower when using only three slices than when
using all 6. We also see that, independently of the SNR, using
only three slices leads to mixing matrix estimates that are
practically as good as when using the full tensor.

0 20 40
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SOBIUM

SGSD-6
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NLS-3
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-13

-12

-11

-10
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NLS-6
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NLS-3

Fig. 3: Performance of SOBIUM as a function of the SNR for
RM = 6 and RM = 3.

V. CONCLUSION AND FUTURE WORK

We have introduced improved versions of the SOBIUM and
FOOBI algorithms for blind identification of underdetermined
mixtures. These methods rely on the computation of the
CPD of an auxiliary tensor, of which the frontal slices are
computed through a large linear system. We have shown
that by computing only a small subset of these slices to
construct a reduced version of the tensor, the computational
cost of this construction as well as the reduced auxiliary CPD
problem can be reduced significantly, without loss of accuracy.
Furthermore, we have introduced state-of-the art methods for
CPD computation, in the form of NLS optimization with
GESD initialization, which are new to the setting of ICA. We
have shown that GESD by itself already computes reliable the
mixing matrix estimates, using only partial matrix EVDs.

Future work in this context incudes devising a method for
the effective computation of only a subset of matrices Mr

from the large matrix P, in order to fully take advantage of the
gain in computational complexity. The structure of P induced
by the mapping Φ can additionally be exploited for efficiency.
Furthermore, the obtained results can prove more generally
relevant, as for instance a variant of the Analytical Constant
Modulus Algorithm (ACMA) [18] could be developed using
similar techniques.
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