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Abstract—Deception jamming is a powerful technique used to
disrupt various radar systems. In this work, we propose a novel
sensor selection scheme for FDA-MIMO radar systems designed
to maximize the likelihood of accurate jammer identification.
The approach exploits the inherent delay between a jammer
measuring incoming waveforms and its response. This delay
induces a slight shift in the perceived distance across different
receivers, known as the deception range, enabling differentiation
between jammers and true targets. The proposed sensor selection
scheme is formulated to minimize the achievable variance of the
deception range, enhancing identification accuracy.

Index Terms—FDA-MIMO radar, Jammer detection, Optimal
sensor selection, Deception range

I. INTRODUCTION

Deception jamming is a simple but efficient technique for
disrupting many forms of radar systems [1], [2]. This form
of jammers can intercept, modulate, and retransmit incoming
radar signals to create false targets that closely resemble real
ones [3]-[6]. This capability enables the jammer to actively
manipulate the perceived number, location, and velocity of
reflections detected by the interrogating radar system. In order
to alleviate such interference, it is critical that the radar system
identifies which reflections corresponds to real targets and
which are the results of a deceptive jammer.

Given the importance of the topic, this has resulted in
several studies with this focus. Such works include the interfer-
ence suppression method using data-independent beamforming
that was proposed in [7], employing a minimum redundancy
array design for transmitting. As an alternative, an electronic
counter-countermeasures technique against velocity deception
jamming was proposed in [8], where an approach to estimate
the parameters of the false targets was also presented. A
three-dimensional joint domain localized space-time adaptive
processing (STAP) method, together with deception jamming
pre-whitening was proposed in [9] to deal with performance
degradation in the presence of dense false target jamming. In
[10], an adaptive suppression technique was introduced that
exploited random permutations of the frequency increments
of a frequency diverse array (FDA).

Several of these studies exploit FDA multiple-input
multiple-output (MIMO) radar systems, an area that has re-
cently attracted notable interest, not least due to such systems’
capability to suppress mainlobe interference [11], [12], but
also due to the ability to jointly estimate both range and angle
to a target [13]. A key aspect of FDA is that more degrees of
freedom in the range dimension are available to focus the beam
in the range-angle plane. This comes at the cost of a more
involved processing of the signals due to potentially aliased
multi-carrier signals.
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Another area that has attracted increasing interest is the
optimal selection of sensors. For many applications, such
as localization and target identification, the choice of sensor
placements is critical [14]-[18]. Clearly, some sensor place-
ments are more suitable than others, and several works have
examined how the sensor placement may be done optimally.
Most of the noted approaches exploit some form of minimiza-
tion of the corresponding Cramér-Rao lower bound (CRLB)
in order to select the placement that yields the theoretically
lowest parameter variance. Most commonly, these approaches
employ A-optimality, minimizing the sum of the eigenvalues
of the CRB. Given the difference in scale and importance
between the different radar parameters, it is often beneficial
to also form the optimization so that the relevant parameters
may be appropriately emphasized [16], [19].

In this paper, we combine these two areas of study, ex-
amining the optimal sensor selection for determining whether
the impinging reflections result from true targets or from
deceptive jammers. To do so, we combine the (A-optimal)
sensor selection scheme developed in [16], [19], allowing for
parameter selection with a signal structure emphasizing the
deception range resulting from the inevitable processing delay
of the jammers. By being able to accurately determine the
deception range, an estimator will be able to improve the
differentiation between targets and jammers. As the ability
to determine the deception range necessitates an accurate
estimation of the other radar parameters, the determined sensor
selection scheme will also yield a suitable sensor selection for
these parameter, as is also demonstrated, even though this is
not emphasizes in the resulting optimization.

The remainder of the paper is organized as follows: in the
next section, we present the signal model taking into account
the deception range of the jammers. Then, in Section III, we
introduce the optimal sensor selection scheme emphasizing the
estimation performance of the deception range. Section IV
contains numerical simulations illustrating the achieved per-
formance gain as compared to selecting the sensors randomly
10.000 times and picking the best selection. Finally, we
conclude on the work in Section V.

II. SIGNAL MODEL

Consider M transmitters and NV receivers, measuring signals
resulting from @) targets, with the mth transmitter and the nth
receiver being located at

m;’f:[mf Yn ]T7 ’I’L:1,"'7N (2)
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respectively, with [-]7" denoting the transpose. The kth radar
pulse from the mth transmitter is formed as

Tmk (t) = \/ES”L (t - (k - 1) T) Wk: (t) (3)

where k =1,--- | K, with K being the number of pulses, F
denotes the total transmitting energy, s,,(t) is the baseband
signal with pulse repetition interval (PRI) 7" and bandwidth
By, whereas Wy, (t) defines a rectangular window, i.e.,

1, (k—1)T<t<kT

Wi (t) = { 0, otherwise @

In order to be able to separate the transmitted pulses at the
receivers, the transmitted signals are formed to be (at least
approximatively) orthogonal, i.e.,

. , _ 1, m=m
/Td sm (t)spy (t+1)dt = { 0, otherwise

where t' is assumed to be small, 7; is the duration of the
waveform with Ty < T, and 6,,,, is the Kronecker delta. Let
7 .. denote the propagation time delay for the kth pulse of
the mth transmitter to reach the gth target and be backscattered
to the nth receiver, with

T _ 59 R _ 4
P (SN TR

where pf = [z y]

number k.
Allowing for the motion of the reflectors, the received signal
will experience a Doppler shift, v, . formed as [4]

]T is the location of the gth target at pulse

m

Vglnk == f; {Aﬁlnk + Azznk + 5%} (7)
Aﬁ@nk = Cos (‘pgnk + ¢2Lk)'rz (8)
A, = sin (il + 61, )i ©)

where f denotes the carrier frequency of the mth transmitter
and ! and ¢!, are the target bearing angles at the trans-
mitter and receiver with respect to x axis, respectively, i.e.,

oy = aan2{ (yf —yT), (o —2]) |
o, = atan2{(yz —yR), (zf - xf)},

with atan2(-) denoting the 2-argument arctangent function.
Then, the signal received by nth receive sensor at the kth
pulse for the gth target may be expressed as

(10)
Y

M
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’

Pk Wi (t = 72,0)  (12)

where
o?fn,n = E/Mafn,n, (13)
Tk = Tk + T3/ C (14)
kr = (k—1)T, (15)

with o, denoting the (unknown) complex-valued reflectivity
coefficient accounting for the radar cross section (RCS) of the
target and ] denoting the deception range; for a true target
this will thus be zero, whereas for a jammer it will be non-zero
due to the inevitable internal processing delay of the jammer.

Forming the transmitted signal as
Sp(t) = P2 B/ T)E) — o320, 1) (16)

where u(t) = e/27(B:/T)t* denotes the baseband emitted
signal, the demodulated signal may be expressed as

Zpnk (1) = G (e P2
M
= 3 @t = T~
=1

. q _fm ~
2 W I (- 72, ) (1)

]CT)X

Matched filtering with the baseband signal then yields

é’?rmk: (T) = / 27qnnk (t + T)u* (t)dt

P

m

~al eIV SN (1 F 4+ kp)  (18)
where
A (1,7') = /T sm(t+7—7")sk, (t)dt
_ ) 1 {ej““(T_T/)t} t=b
jdmp(t —7') t=a
_ A= gjdmu(r—r)a o)

jamp(r —7')

with p = By/Tp, a = max(7,7’), and b = min(7,7") + T).
Thus, at the pth range bin, 7 = pt,, with t5 = 1/ f5, where f;
denotes the sampling frequency, the preprocessed signal may
be expressed as

p _ ¥ap D
Pmnk = § :Zmnk + Wnk (20)
q

9P — x4 p it
where Zpnk = z (pts) and w! . denotes an additive
noise that is here assumed to be well modelled as a zero-
mean circularly symmetric white Gaussian noise, i.e., w? . ~

CN(0,02).
III. OPTIMAL SENSOR SELECTION

Assuming that there are M fixed transmitters (TX) and that
N receivers (RX) are selected from the sensor set M =

{1,...,T} of potential candidate locations, the unknown
parameters detailing the system are
£=lel €k oul’ 21)
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where £, = [(©})T (©)")" and

Of =[z{ wi i gl rl < of]". (@
In order to select optimal RX sensor placements for determin-
ing if a reflector is formed by a true target or a jammer, we
consider a setup containing Y potential sensor locations, as
illustrated in Figure 1. The sought target identification may
then be determined by estimating the perceived deception
range of each reflector, as the true targets should have a neg-
ligible deception range whereas any jammer will necessarily
have a non-zero deception range. The theoretical minimum
achievable variance of the involved parameter estimates may
be expressed as a function of the Fisher information matrices
(FIMs) corresponding to each potential sensor placement. For
an RX candidate position n, the corresponding FIM may be
expressed as

FIM,, (¢) = —E [ngg 1ogp(zn)}

_ 032 3 (%{nggnkvg(zﬁnk)}>

W om,k,p

= > FIM,(§) =F,(§)

m,k,p

(23)

where z,, is the vector of zf;mk over p, k, and m (in that
order), V¢ denotes the gradient with respect to &, R{-} the
real part, and p(z,) is the probability density function (PDF)
of the data. Reminiscent of the optimal sampling problems
formulated in [16], [19], the optimal sensor selection may then
be formed using A-optimality, i.e., by minimizing the trace of
the resulting error covariance matrix, i.e.,

- —1
n&n trace (Z wnFn(§)>
n=1

17w < N,
wy, € {0,1},n=1,2,...,7 = |M|

subject to 24)

where w is the YT-dimensional weight vector indicating if a
candidate sensor placement in the set of potential candidate
placements, M, is used or not. The resulting problem is non-
convex due to the binary nature of the selection variables.
To form a computationally tractable approximation, one may
instead use the convex relaxation

-1

min
w

T
trace Z wpFp(€)
n=1

subject to 17w < N,
wy €10,1],n=1,2,...,T = |M|

(25)

where the constraints on w have been relaxed by allowing it to
take on values in the continuous interval [0, 1]. The resulting
relaxed solution will yield a sensor placement, formed by
rounding the determined values w,, to either O or 1, producing
an estimate close to the optimal (combinatorial) solution. As
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Fig. 1. An illustration of the considered setup, showing the TX locations, the
potential RX locations as well as a single target and two jammers.

shown in [19], the resulting optimization problem may be
reformulated as

mmin 3" o
wow o

T
subject to F:":l wleF"(é) el] =0,
€ He

T
> w,Fu(§) = 0,
n=1

1Tw < N,w, € [0,1], (26)

for V¢ € {1, ..., L}, where v, denotes a weighting
factor that may be included to indicate the importance of
specific parameters, £ the number of elements in the parameter
vector £, ey the (th canonical basis vector, i.e., a vector
containing a 1 at the /th position and zeros elsewhere, and
with X > 0 denoting that the matrix is positive semidefinite.
This constitutes a semidefinite program that may be solved
efficiently using standard convex solvers, such as SeDuMi or
SDPT3 (see also [20]).

Given that the here considered problem focuses on the iden-
tification of the nature of the reflecting target, the parameter
of interest here is only the deception ranges, implying that
vy = 1 for £ € {5,12,19}, and zero otherwise, for the
below examples. The resulting optimization problem will then
select the RX sensor candidates that allow for the theoretical
minimal variance of the deception range. To allow for an
accurate estimate of the deception range, it will necessitate
accurate estimates of the other relevant parameters for the
reflector. Thus, the selection will clearly not be unsuitable
for these other estimates, but by setting the emphasis on only
minimizing the theoretical variance of the deception range, the
sensor selection will optimize for this parameter.
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Fig. 2. The minimum achieved standard deviation for the estimate of the
deception range using N = 10 RX sensors for varying number of candidate
locations, using the proposed method, as compared to the best of 10.000
uniformly drawn sensor selections. The result show the average standard
deviation for 100 MC simulations over the different candidate locations for
an SNR of -10 dB.

IV. NUMERICAL SIMULATIONS

We proceed to examine the performance of the proposed
sensor selection scheme, considering a setup with M = 2 TX-
antennas, each emitting a chirp-modulated pulse with carrier
frequency

[ = fo+mAf, 27)

where fo = 1 GHz and Af = 1 MHz. The emitted pulse
length is T}, = 4 ps, the sampling frequency f, = 15 MHz,
and the bandwidth is B, = 1 MHz. The candidate grid for the
RX sensors is a 10-by-10 grid, with each grid point location
placed 100 m apart, as illustrated in Figure 1, with each
location containing 9 potential candidate positions arranged
in a 3-by-3 grid, with an intersensor distance of 0.15 m. In
this example, the target state vector is

el = [ 3000 2400 40 25 0 0 1 }T
(with units [m, m, m/s, m/s, m, Hz, 1]), whereas the two
jammer state vectors are

©% =] 2400 1200 20 —10 100 10 1],
®*=1[2000 3000 —50 30 150 —15 1] .

For simplicity, only a single pulse, K = 1, is considered.
Figure 2 illustrates how the standard deviation of the de-
ception range depends on the number of considered candidate
locations when selecting N = 10 RX sensors, comparing the
standar deviation resulting from the proposed method with that
of the best of 10.000 uniformly drawn placements. Here, the
considered candidates have been drawn (uniformly) from the
full 10-by-10 grid (containing 100 locations, each containing 9
potential sensor placements). To avoid bias due to the selection
of candidate locations, the shown result for each number of
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Fig. 3. The minimum achieved standard deviation for the estimate of the
deception range, using 60 candidate locations, for varying number of selected
RX sensors, using the proposed method, as compared to the best of 10.000
uniformly drawn sensor selections. The result show the average standard
deviation for 100 MC simulations over the different candidate locations for
an SNR of -10 dB.

candidates is the average result computed over 100 Monte-
Carlo (MC) simulations. As is clear from the figure, the
proposed method clearly outperforms the best of the randomly
drawn placements, with the gain naturally increasing as the
number of considered locations increase.

Figure 3 illustrates the result if one instead varies the num-
ber of selected RX sensors for a fixed number of considered
locations, here selected to be 60 candidate locations, i.e.,
for 60 x 9 = 540 potential sensor placements. The result
again shows the average standard deviation from 100 MC
simulations. As can be seen in the figure, the proposed method
is showing a consistent gain as compared to the best random
sensor placement, for all number of selected sensors. In these
examples, the signal-to-noise ratio (SNR), defined as

$9pP 2
SNR =10log (Ilmwnm))

o2 (28)
has been set to SNR = —10 dB, where the mean has been
taken over all non-zero samples of the pulse.

As the proposed optimization emphasizes the deception
range, not the target localization parameters, the positioning
performance of the proposed scheme will be somewhat worse
than optimal for localization. As compared to the best local-
ization estimate from 10.000 random sensor selections, this
loss is on average 0.02% of the overall position error for
the target, for SNR = -10 dB, N = 10, and 60 candidate
locations, indicating the marginal influence on the positioning
by the focused optimization. Finally, Figure 4 illustrates how
the performance is affected for varying SNR, for N = 10
RX sensors and 60 candidate locations. As expected, the
minimal standard deviation can be seen to increase linearly
with increasing SNR.
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Fig. 4. The minimum achieved standard deviation for the estimate of the
deception range using N = 10 RX sensors and 60 candidate locations, i.e.,
540 potential sensor placements, for varying values of the SNR, using the
proposed method. The result show the average standard deviation for 100
MC simulation over the different candidate locations

V. CONCLUSIONS

In this paper, we develop an optimal sensor placement
scheme for parameter estimation in the presence of deception
jamming, which allows individual weighting of the importance
of each parameter. This allows us to optimize the sensor
placement specifically for the estimation of the deception
range, to be used for jammer identification. We compare the
proposed method to a randomized method that picks the best
sensor placement out of 10.000 different ones, and we show
that the proposed method outperforms the randomized method.
Lastly, it can be noted that the proposed method will be more
useful when there are many candidates to pick from and when
many sensors are to be selected.
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