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Abstract—Radio Environment Maps (REMs) play a crucial
role in creating Electromagnetic (EM) situational awareness.
This paper addresses the challenge of planning and optimizing
measurement locations for REM construction, especially in time
or resource-limited situations. Based on Optimal Experimental
Design (OED), two measurement location planning strategies are
derived from D-optimal and G-optimal design. In addition, the
developed strategies are evaluated against baseline strategies and
in terms of the impact of measurement density on the quality of
REM construction. A measurement campaign at a music festival
was carried out to collect real-world measurement data. The
collected measurements provide a rural measurement dataset to
evaluate different measurement location selection strategies. The
results show that an optimized selection strategy can improve the
accuracy of the REM construction by 6 dB on average compared
to baseline methods.

Index Terms—5G, Cognitive Radio, Electromagnetic Aware-
ness, Measurement Planning, Optimal Experimental Design,
Radio Environment Map, Spatial Spectrum Sensing

I. INTRODUCTION

The evolution of wireless communication technologies, such
as Cognitive Radio (CR) networks or the transition from fifth
generation mobile network (5G) to sixth generation mobile
network (6G), is leading to increasing demands, for example,
in terms of adaptability to changing Electromagnetic (EM)
conditions. In order to adapt the system to changing require-
ments, an awareness of the EM situation is required [1].

In this respect, Spatial Spectrum Sensing by using Radio
Environment Maps (REMs) are a fundamental tool for creating
such awareness. REMs provide a spatial representation of
the Electromagnetic (EM) situation or the active radio signal
characteristics, such as signal strength, interference power, or
spectrum occupancy. This makes REMs a useful tool for spec-
trum management [2], opportunistic spectrum usage [3], or
network optimization [4]. While there are indirect methods of
generating REMs by estimating parameters such as location or
transmit power [5], this work focuses on the direct approach,
namely, interpolation-based REMs construction. Common ex-
amples of direct REM construction methods are Kriging,
Inverse Distance Weighting (IDW), and Nearest Neighbor
Interpolations (NNs) [6]. In this work, IDW is chosen because
of its lower computational complexity compared to Kriging
and it gives a continuous result in contrast to the NN approach.

Extensive spatially distributed measurements are required
to generate accurate REMs. However, these are costly and
time-consuming. The planning of measurement locations can
mitigate those effects, e.g., by choosing a more efficient distri-
bution of the measurement locations. It can, therefore, alleviate
the degradation of REM construction with a reduced number
of measurement locations. Various approaches exist that look
at sensor placement strategies for interpolation algorithms.
These methods, for example, are based on variogram gradients
[7], PCA [8], or sensitivity matrices [9]. While [8], [9] require
a-priori knowledge about propagation or channel characteris-
tics, [7] is an update strategy to iteratively find the optimal
placement of sensor nodes while making measurements.

In this paper, however, placement strategies solely rely on
the spatial distribution of the measurement locations without
any a-priori knowledge. In OED, the designs that, in this
case, represent the distribution of the measurement locations
are based on various optimality criteria. These optimality
criteria are designed to optimize for objectives like minimizing
uncertainty (D-optimal design) or maximizing robustness (G-
optimal design) [10], [11]. Based on these principles, two
strategies are derived and evaluated based on real-world
measurements. The evaluation is based on comparing the
derived strategies and two baseline strategies with respect
to REM construction quality, a direct comparison between
the two optimized strategies, and the effect of measurement
density, defined as the number of measurements per area. The
impact of measurement density gives insight into the planning
of measurement campaigns, when assessing the number of
needed measurement locations for a certain area size. The
main contributions of the paper can be summarized as follows:

• Derivation of two measurement selection strategies based
on OED: D-optimal and G-optimal design

• Evaluation of the derived measurement selection methods
for REM construction based on OED optimality criteria

• Evaluation of measurement density impact on REMs

The paper is structured as follows. First, we present the overall
scenario in section II. Section III describes the measurement
setup and the available data set. Then we cover the methods,
such as measurement selection strategies and interpolation
method, in section IV. Section V presents the results. Finally,
Section VI and Section VII discuss and conclude the work.
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II. SCENARIO

This chapter gives a brief overview of the scenario and
the notation. The initial situation is that there is a target
area that needs to be monitored concerning the EM situation.
Achieving a good REM with a limited number of measurement
locations requires a good selection strategy. In the following,
the notation used in this paper is introduced. Let:

• Â be the target area to be monitored in terms of the EM
situation.

• A be the set of regularly spaced rectangular grid points
(interpolation grid) covering Â.

• Ω(A) = Nx · Ny · ∆x · ∆y be the area covered by the
interpolation grid A where Nx is the number of cells in
x, Ny is the number of cells in y direction and ∆x and
∆y the respective step sizes. Here, we only consider 2D,
but this can be extended to 3D by adding the z direction.

• P ⊂ A be the set of available measurement locations.
• S ⊂ P is a subset of N locations chosen for the

interpolation-based REM construction, i.e., |S|= N .
• ρ = |S|

Ω(A) be the measurement density, defined as number
of measurements per interpolation grid area Ω(A).

III. MEASUREMENTS

A measurement campaign was conducted during a music
festival in a crowded rural area shown in Fig. 1. A more
detailed setup can be found in [3]. During that music festival,

Source: Esri, Maxar, Earthstar Geographics, and the GIS
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Fig. 1: Overview of the rural scenario of the measurement campaign,
including the locations of two non-public network (NPN).

two 5G NPNs were deployed to evaluate and demonstrate
the feasibility of spectrum sensing in a controlled scenario.
One 5G NPN (NPN1) was used as the primary base station
while the other 5G NPN (NPN2) served as an Emergency
Communication System (ECS), providing communications to
the Public Protection Disaster Relief (PPDR) personnel that
was active at the festival. The schematic setup is shown in
Fig. 1. The antennas of the 5G NPNs were oriented towards
the infield of the festival site, as shown by the dashed areas
in Fig. 1. Both 5G NPNs operated simultaneously in the same

Tab. 1: Hardware and Configuration

Device property Details

Spectrum Analyzer R&S TSMA6B
Frequency Range 3.7GHz to 3.8GHz
Sensitivity −160dBm

frequency range between 3.7GHz to 3.8GHz and used the
available bandwidth of up to 100MHz. The equipment used

Esri, TomTom, Garmin, Foursquare, GeoTechnologies, Inc,

METI/NASA, USGS
 1000 ft 

 200 m 

Measurement Locations

Exemplary Subarea

Fig. 2: Overview of available measurement locations and an example
of a subarea used to evaluate different area sizes.

for collecting the measurement data and its configuration are
listed in Tab. 1.

A. Measured Parameters

During the measurement campaign, the following parame-
ters related to spectrum sensing were recorded:

• SS-RSRP: The Synchronization Signal Received Signal
Reference Power (SS-RSRP) was measured to assess the
signal strength of the deployed NPNs.

• Power Spectral Density (PSD): The power distribution
across the frequency-domain was captured to analyze
spectral characteristics of the signals.

• Reference Position: A corresponding GPS reference
position was also determined for each measured value.

B. Overview of Measurement Collection and Processing

Fig. 2 shows the spatial coverage of the festival area. The to-
tal data collected covers recordings of approximately 10 hours.
The recordings were taken over different days and merged
into a common data set. After the measurement collection,
the data was further processed. Measurements were aggregated
to 10m× 10m pixels covering the whole area, based on the
corresponding reference position. Statistics were created on the
summarized pixels, including minimum, maximum, mean, and
median values. At locations or instances where the SS-RSRP
was not detectable, a default value of −160 dBm was assigned
to ensure consistency across space in the dataset.
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IV. MEASUREMENT SELECTION AND INTERPOLATION

We first derive two measurement selection strategies based
on two respective OED optimality criteria. An algorithm was
then developed for each of the strategies. These algorithms
are so-called greedy algorithms, which may produce a sub-
optimal solution. We then introduce the interpolation method
and give an overview of the procedure from selection strategy
to evaluating the REM construction.

A. Measurement Selection Strategy

The measurement selection strategies in this work are based
on OED. Here, we use OED criteria to select a subset of
design points that each optimize measurement selection for a
statistical criterion.

For each point p ∈ P , let x(p) denote its associated
regression vector. Define the design matrix X for set S as:

X =
[
x(p1) x(p2) . . . x(pN )

]T
(1)

and the corresponding Fisher information matrix:

M(S) = X⊤X. (2)

The two OED criteria used in this work are D-optimality and
G-optimality criteria [10], [11].

1) D-Optimality Criterion and MaxMin: D-optimality max-
imizes the determinant of the Fisher information matrix. It is
defined as:

S∗
D = arg max

S⊂P, |S|=N
det(M(S)). (3)

A higher determinant generally indicates that the design points
are well spread out, as this maximizes the information. While
we are aiming for interpolation instead of regression, the goal
still is to find a well spread-out distribution of measurement
points, which leads to the following:

S∗
D = arg max

S⊂P, |S|=N
min

pi, pj∈S
i̸=j

∥pi − pj∥2. (4)

In other words, we are looking for a subset of measurement
points that maximizes the distance to the closest other mea-
surement point. This leads to the first derived selection strategy
and algorithm Algorithm 1:

Objective Select N points from a set P = {p1, p2, . . . , pM}
such that the minimum pairwise distance between the selected
points is maximized.

2) G-Optimality Criterion and MinMax: G-optimality min-
imizes the worst-case prediction variance over the design
space. For a point p with regression vector x(p), the prediction
variance is proportional to

Var ∝ x(p)⊤M(S)−1x(p). (5)

A G-optimal design minimizes the maximum variance:

S∗
G = arg min

S⊂P, |S|=N
max
p∈P

x(p)⊤M(S)−1x(p). (6)

By minimizing the maximum prediction variance of a regres-
sion problem the worst-case interpolation error is minimized.

Algorithm 1 MaxMin Selection Strategy

Require: Potential measurement location set P and desired
number of nodes N

Ensure: Selected set S ⊂ P with |S|= N
Initialize S ← {pfirst} {Choose an arbitrary starting point
pfirst ∈ P}
while |S|< N do

for all p ∈ P \ S do
Compute d(p)← mins∈S∥p− s∥2

end for
pnew ← argmaxp∈P\S d(p)
S ← S ∪ {pnew}

end while

For interpolation this translates to the following statement:
Every point that is estimated should be as close to a selected
measurement point as possible, which leads to the following:

S∗
G = arg min

S⊂P, |S|=N
max
a∈A

min
pi∈S
∥pi − a∥2. (7)

In other words, we try to select a subset of measurement points
in order to minimize the distance to the subset for all points
in A, which leads to the following strategy and algorithm 2:

Objective Select N points from P = {p1, p2, . . . , pM} such
that the maximum distance of any point in A (the interpolation
grid) to the closest selceted point is minimized.

Algorithm 2 MinMax Selection Strategy

Require: Candidate set P and desired number of nodes N
Ensure: Selected set S ⊂ P with |S|= N

Initialize S ← {pfirst} {Choose an arbitrary starting point
pfirst ∈ P}
while |S|< N do

for all p ∈ P \ S do
Compute dmin(p)← mina∈A∥pi − a∥2

end for
pnew ← argmaxp∈P dmin(p)
S ← S ∪ {pnew}

end while

3) Baseline Strategies: For validation purposes, we also
implemented two additional strategies for comparison. The
first strategy aims to create a regular grid as options for
measurement locations. As the available measurements shown
in Fig. 2 do not follow a regular grid, the approach here is to
take N measurement locations that are closest to the locations
of the regular grid. We chose an equilateral triangular grid.

Objective (ClosestToGrid) Select N unique points from
set P such that they are as close as possible to a regular grid.

The last strategy used in the evaluation is based on the ran-
dom selection of N measurement locations from the available
measurement locations within the target area A.

Objective (Random) Select N random unique points from
set P .
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B. REM Construction

IDW is an interpolation method known for its simplicity and
low complexity. The idea behind this method is to attribute
more weight to closer measurement locations [12]. In the
context of REM, IDW is used to estimate the received power
at all interpolation grid points a ∈ A.

C. Procedure and Evaluation Metrics

The processed data set was divided into subareas. One
exemplary subarea is shown in Fig. 2. This subset of available
measurement locations was then used to apply the different
selection strategies, resulting in a set of N remaining mea-
surement locations. This last set was then used to create a
REM based on IDW. For evaluating the constructed REM,
a baseline REM is created based on all available processed
measurement data. The metric used to evaluate the different
selection strategies is Mean Absolute Error (MAE) between
the constructed REM (REMc) and the baseline REM (REMb),
which is defined as follows:

MAE(A)
1

NxNy

Nx∑
i=1

Ny∑
j=1

|REMb(xi, yj)− REMc(xi, yj)| (8)

V. RESULTS

The following section first shows a comparison between the
two derived OED-based strategies, MaxMin (Sec. IV-A1) and
MinMax (Sec. IV-A2), and the two baseline strategies, namely
Random and ClosestToGrid selection (Sec. IV-A3). After that,
the effects of measurement density are investigated.

A. Comparison of Selection Strategies vs. Random Selection

We evaluated the performance of different sensor node
selection strategies, namely MinMax, MaxMin, ClosestToGrid
and Random. Figure 3 shows the REM construction error as a
function of the number of locations N . It should be noted that
Tab.2 shows the MAE averaged over different sections of the
festival area. The size of these sections varies and is not fixed.
Also, the measurement distribution within these sections varies
highly. The two optimized strategies, MaxMin and MinMax,
are close in performance shown in Fig. 3 and the results also
show that the two optimized selection strategies outperform
the two baseline strategies, Random and ClosestToGrid, when
looking at the MAE of the REM construction error. The MAE
of the REM construction for the MaxMin strategy is about
1 dB lower than for the Random approach. Comparing Clos-
estToGrid and MaxMin, the MaxMin strategy outperforms the
former by about 6 dB in terms of MAE of REM construction.
As stated in Tab. 2, both optimized strategies differ less than
0.5 dB in REM construction accuracy across varying area sizes
and a varying number of measurements.

B. Impact of Measurement Density

In the following, the impact of measurement density, defined
as the number of measurement locations per target area, is
evaluated for MinMax and MaxMin measurement selection
strategies. Six different-sized rectangular areas were moved

Tab. 2: Performance of selection strategies across different area sizes
and different number of measurement locations N .

Strategy MAE [dB]

ClosestToGrid 14.6
Random 10.1
MaxMin 8.7
MinMax 9.0
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Fig. 3: Comparison of MAE of REM construction vs. number of
measurement points for baseline selection and optimized strategies.

across the festival site, and REMs construction MAE were
created for each target area respectively for a varying number
of measurement locations as shown in Fig. 4, which also states
the different sizes of the areas. All six show a similar tendency
as the REM construction MAE decreases over a decreasing
measurement density ρ regardless of measurement density.
While the construction MAE for MinMax and MaxMin is
nearly the same, for different area sizes, it can be seen that
the reconstruction error is higher for bigger areas when having
the same density. For example at a measurement density of
50N/km2, the MAE for a target area size of 750m×600m is
at roughly 5 dB compared to a construction error of about 4 dB
for a target area size 750m×400m. Similar for a measurement
density of 100N/km2, the construction error for a target area
size of 500m × 400m is about 2.5 dB whereas for a target
area size of 500m×200m is about 1.4 dB. These results will
further be discussed in Sec. VI.

VI. DISCUSSION

The results show that measurement location selection strate-
gies have a significant effect on the quality of REM con-
struction. By comparing the different strategies, namely the
optimized MaxMin and MinMax approaches and the baseline
strategies Random and ClosestToGrid, we have shown that
the measurement location selection strategy can reduce the
construction error of REM, even in the case of a limited
number of measurement locations. The improved performance
can be explained by the optimization goals of the derived
strategies. The MaxMin strategy aims for the maximal spread
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Fig. 4: Comparison of impact of measurement density for REM con-
struction MAE based on MaxMin and MinMax selection strategies.

of measurement locations among the available locations. This
results in a distribution of measurement locations covering
a space as big as possible. Similar to that, the MinMax
approach minimizes the distance of each interpolation grid
point to a measurement location. This results in the most
even distribution of measurement locations possible across the
target area. Both strategies cover the target area in a better way
for interpolation purposes compared to the Random and the
ClosestToGrid strategy as in the two baseline strategies a local
clustering of measurements can appear. Therefore, optimized
selection results in a better interpolation outcome. While
already outperforming baseline methods, further improvements
can be expected if additional parameters such as terrain,
environment, or existing domain knowledge are taken into
account in the selection strategy.

Comparing the REM construction MAE for different area
sizes, the expected patterns can be seen in Fig. 4, where
the accuracy of the REM construction improves as the num-
ber of measurements used increases. While the density of
measurements does not directly reflect the accuracy of the
REM construction, as for larger areas, a higher density of
measurements is required to achieve similar reconstruction
accuracy results (see Fig. 4). This indicates that the number
of measurements cannot be linked linearly to the target area.
More in-depth investigations are necessary to work out the
underlying relationships between measurement density and
target area. Currently, the results indicate that there is no big
difference in performance among the two optimized selection
strategies, however a deeper comparison of the two strategies
can show more insights into the differences, advantages, and
disadvantages of both methods.

VII. CONCLUSION

This paper introduced two different strategies to select
measurement locations for REM construction based on IDW
interpolation to improve the quality of created REMs. Fur-
thermore, a measurement campaign was conducted to collect

real-world measurement data to show the feasibility of spatial
spectrum sensing in PPDR missions. Using this data set, we
showed an improvement in REM construction accuracy for
both strategies based on OED optimality criteria compared to
baseline selection strategies. These findings provide valuable
input for measurement planning, resulting in better REM
estimation, especially in situations with limited access to mea-
surement locations or limited time to carry out measurements.
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