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Abstract—This paper focuses on the joint design of unimodular
waveforms and mismatched filters to enhance target detection
performance and mitigate interrupted-sampling repeater jam-
ming (ISRJ) through a bi-objective optimization framework.
The design aims to achieve favorable correlation properties and
control the signal-to-noise ratio loss (SNRL) at the mismatched
filter output, while concurrently suppressing both the range
processing gain and the ISRJ energy. To evaluate target detection
performance, we employ a weighted sum of the integrated
sidelobe level (ISL) and an SNRL-related penalty term as the
primary metric. Meanwhile, jamming suppression is evaluated
by the weighted sum of the jamming integrated level and the
jamming peak level. Using these multiple metrics, we formulate
the design into a non-convex bi-objective optimization problem
with unimodular constraints and energy restrictions. To solve
it, we propose an algorithm based on the weighted objectives
approach, wherein multiple objectives are reformulated into a
single objective function with adaptively determined weighting
coefficients. The proposed algorithm dynamically updates the
weighting coefficients and obtains a closed-form solution via
a multiple-gradient descent-based approach that is followed by
projections toward the respective feasibility set at each iteration.
Simulations verify the effectiveness of the proposed algorithm.

Index Terms—Anti-jamming, interrupted-sampling repeater
jamming (ISRJ), correlation levels, bi-objective optimization

I. INTRODUCTION

Jamming suppression has consistently drawn attention over
decades [1]–[4], which has developed with the emergence of
electronic jamming. In complex electromagnetic environment,
electronic jamming is becoming more complicated and poses
a threat to the real target detection of radar. With the de-
velopment of jammer, some electronic jamming, i.e., active
deception jamming based on digital radio frequency memory,
leads to high false-target peak with low transmitting power.
Among active deception jamming, ISRJ has been commonly
used due to the advantages of it, such as short response
time, high echo similarity, and simple implementation [5]. The
countermeasure for ISRJ needs to be further developed.

In light of improving radar detection performances in jam-
ming scenarios, there already exist works on suppressing the
ISRJ [6]–[8] using different characteristics between the ISRJ
and the true target in time-frequency domain. Earlier works
identify jamming and estimate its parameters [8] to design a
frequency filter to suppress ISRJ using signal processing meth-
ods, i.e., fractional Fourier transform (FrFT) [6], short-time

This work was supported in part by the National Natural Science Foundation
of China (NSFC) under grants 62271054 and U21A20456.

Fourier transform (STFT) [7], etc. However, the capability of
ISRJ rejection performance of this kind of methods is limited
by the accuracy of ISRJ parameter estimation. The recent work
addressing this challenge is presented in [9]–[12], where the
authors design waveforms and its corresponding mismatched
filter to suppress ISRJ. Most of them aim to obtain good
radar detection and anti-jamming performance by optimizing
multiple criteria [9]–[11]. Technically, they directly use the
sum of the criteria with constant coefficients as the metric
of the waveform design problem. However, such joint design
considering the bi-objective optimization of these multiple
criteria has not been studied in existing literature.

In this paper, we jointly design unimodular waveforms and
mismatched filters to obtain good target detection performance
and counteract ISRJ. We aim to achieve good correlation
properties and control signal-to-noise ratio loss (SNRL) of
the mismatched filter output, while simultaneously suppressing
the range processing gain and energy of the ISRJ. To this
end, we employ a weighted sum of the integrated sidelobe
level (ISL) and an SNRL-related penalty term as the pri-
mary metric for evaluating target detection performance. For
jamming suppression, we adopt the weighted sum of the
jamming integrated level and jamming peak level as the key
metric. Then, we formulate the design into a non-convex bi-
objective optimization problem with unimodular constraints
and energy restrictions. To solve it, we propose an algorithm
based on weighted objectives approach, wherein the multiple
objectives are reformulated into a single weighted objective
function. This method involves dynamically updating adaptive
weighting coefficients iteratively and solving the reformulated
problem via a multiple-gradient descent based method. Then,
we conduct projections toward the formulated constraints.
Simulations verify the effectiveness of the proposed algorithm.

Notations: We use (·)∗, (·)T, (·)H, (·)†, ⊙, ⊗ | · |, ∥ · ∥, ∇,
and [·]i,j to denote conjugate, transpose, conjugate transpose,
pseudo-inverse, Hadamard product, Kronecker product, mod-
ulus, Euclidean norm, gradient, and the (i, j)-th element of
a matrix, respectively. Moreover 0M and 1M are the M × 1
vectors with all elements being 0 and 1, respectively.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a radar system which emits M pulses of uni-
modular and mutually orthogonal waveforms in a coher-
ent processing interval, each of which has a code length
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equal to L. We denote the waveform vector by x ≜
[xT

1 , · · · ,xT
M ]T ∈ CLM×1, whose m-th component corre-

sponds to the m-th launched waveform characterized by
xm ≜ [xm(1), · · · ,xm(L)]T ∈ CL×1. Let the p-th element
of xm be xm(p) = ejθm(p) where θm(p) is an arbitrary phase
value ranging between −π and π.

Without loss of generality, the ISRJ signal can be regarded
as the partially sampled version of the transmitted waveforms
with independent receiving and transmitting channels whose
jamming parameters are different. To express the sampling
pattern for generating ISRJ, we introduce the interrupted-
sampling function as

s(t) = rect( t
τ )⊗

+∞∑
n=0

δ(t− nT ) (1)

where rect(·) is a rectangular window function, τ represents
the ISRJ sampling duration, and T is repetition interval of sam-
pling. By discretizing s(t) over the time interval T with an ap-
propriate sampling rate fs and storing all the obtained samples
into a vector denoted by s = [s(t)|t=1/fs , · · · , s(t)|t=L/fs ]

T,
the ISRJ signal can be written as

qm = xm ⊙ s. (2)

To suppress the range processing gain of ISRJ signal, the
mismatched filter with the weight vector hm ∈ CL×1 is
applied to the received signal containing the echoes of xm and
qm. For later use, we store all the weight vectors {hm}Mm=1

into an vector h ≜ [hT
1 , · · · ,hT

M ]T ∈ CLM×1.
From the radar perspective, the output of mismatched filter

is expected to have good correlation properties, which ensures
the accurate extraction of real targets with the interference
of ISRJ jamming. Toward this end, the ISL metric that
characterizes the auto-correlations of transmitted waveform
in each pulse and its corresponding mismatched filter are
typically considered, whose expression is given by

ξ1 ≜
M∑

m=1

L−1∑
l=1−L
l ̸=0

∣∣xH
mSlhm

∣∣2 (3)

where [Sl]i,j ≜

{
1, j − i = k

0, else
. However, the use of the

mismatched filter scheme causes the SNRL at the receiver,
which is expected to be controlled in a reasonable range. The
SNRL of xm and hm is expressed as 10lg10∥xm∥2∥hm∥2

|xH
mhm|2 .

By limiting the energy of mismatched filter by ∥hm∥2 = L̃
and using the fact that ∥xm∥2 = L, the SNRL of {xm}Mm=1

and {hm}Mm=1 can be controlled by minimizing the following
function with penalty form

ξSNRL =

M∑
m=1

|xH
mhm − c1|2 (4)

where c1 denotes a preset constant. By introducing the
weighted coefficient γ1, the objective function for minimizing
the ISL of correlation between transmitted waveforms and

mismatched filter and simultaneously controlling the SNRL
is expressed as

f1 =

M∑
m=1

L−1∑
l=1−L
l ̸=0

∣∣xH
mSlhm

∣∣2 + γ1

M∑
m=1

|xH
mhm − c1|2 (5)

For the task of jamming suppression, receiving filter should
have good orthogonality with the ISRJ signal. Therefore, the
sidelobe energy of the correlation between the mismatched
filter and ISRJ signal is expected as low as possible. The
accumulation of sidelobe energy of correlation between hm

and qm is defined as

ξ2 ≜
M∑

m=1

L−1∑
l=1−L

∣∣qH
mSlhm

∣∣2 . (6)

Meanwhile, the jamming peak level is also expected to be
controlled, which is related to the correlation function of the
ISRJ signal and the receiving filter at lag 0. To this end, the
following penalty function is introduced

ξJPL =

M∑
m=1

|qH
mhm − c2|2 (7)

where c2 is a preset constant used for limiting the jamming
peak level. Combining (6) and (7), the objective function for
anti-jamming can be expressed as

f2 =

M∑
m=1

L−1∑
l=1−L

∣∣qH
mSlhm

∣∣2 + γ2

M∑
m=1

|qH
mhm − c2|2 (8)

with γ2 being a weighted coefficient.
The problem considered here is the joint design of uni-

modular waveform(s) and mismatched filter, whose objective
is to minimize (5) and (8) simultaneously. The above joint
design can be written as the following bi-objective problem

min
h,x

f ≜ (f1, f2)

s.t. ∥hm∥2 = L̃, m = 1, · · · ,M
|xm(l)| = 1, l = 1, · · · , L, m = 1, · · · ,M. (9)

where the first constraint restricts the power of weight vectors
to a constant, and the second constraint corresponds to the
constant modulus of waveform elements.

III. JOINT DESIGN OF WAVEFORMS AND MISMATCHED
FILTER FOR ISRJ SUPPRESSION

To solve (9), we reformulate f1 and f2 as the functions with
respect to w ≜ [xT,hT]T ∈ C2LM×1, which are denoted by
f1(w) and f2(w), respectively. IntroducingM ≜ {1, · · · ,M}
and Up ≜ [0L×L(p−1),1L×L,0L×L(2M−p)] ∈ ZL×2LM , p ∈
[1, 2M ], we can rewrite f1 given by (5) as

f1(w) =

M∑
m=1

L−1∑
l=1−L
l ̸=0

∣∣wHUH
mSlUm+Mw

∣∣2
+ γ1

M∑
m=1

|wHUH
mUm+Mw − c1|2 (10)
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which is obtained by substituting xm = Umw,∀m ∈M and
hm = Um+Mw,∀m ∈ M into (5). Moreover, resorting to
the same routine and using (2), we express f2 given by (8) as

f2(w) =

M∑
m=1

L−1∑
l=1−L

∣∣(Umw ⊙ s)HSlUm+Mw
∣∣2

+ γ2

M∑
m=1

∣∣(Umw ⊙ s)HUm+Mw − c2
∣∣2 . (11)

Based on (10) and (11), the bi-objective problem (9) can be
expressed as 1

min
w

f(w) = (f1(w), f2(w))

s.t. ∥UM+mw∥2 = L̃, m ∈M
|Umw| = 1L, m ∈M (12)

where we use f(w) to re-express f for emphasizing on its
functionality with respect to w.

Considering that problem (12) is bi-objective, we aim to
find solutions that improve one objective without degrading
the other. To solve (12), we propose an algorithm based
on the weighted objectives method with adaptive weighting
coefficients to ensure simultaneous reduction of all objectives.
The adaptive weighting coefficients are dynamically adjusted
at each iteration to guide the variables towards a Pareto
or weakly Pareto optimal solution [13]. The details of the
proposed algorithm are shown as follows.

We reformulate the objective function of (12) as the
weighted sum of f1 and f2, using adaptive coefficients to guide
the variable updates toward a Pareto or weakly Pareto optimal
solution [13]. The coefficients are dynamically adjusted at
each iteration by solving a quadratic problem with a given
w. Then, we minimize the aggregated objective function via
a multiple-gradient [14] descent based approach and leverage
to projection towards the constraints of (12) at each iteration.
In the following, we present our detailed solution to (12).

A. Problem Reformulation and Coefficients Determination

By introducing the adaptive coefficient vector α ≜
[α1, α2]

T ∈ R2×1 with 1T
2 α = 1, we transform (12) as follows

min
w

f̃(w) ≜
2∑

i=1

αifi(w)

s.t. ∥UM+mw∥2 = L̃, m ∈M
|Umw| = 1L, m ∈M. (13)

Before proceeding with (13), we need to determine α. To this
end we present the following lemma.

Lemma 1. Let w∗ be a Pareto optimal solution of the problem
(13). Then, there exists non-negative scalars α1 > 0 and α2 >
0 such as

∑2
i=1 αi = 1 and

∑2
i=1 αi∇fi(w) = 0.

Proof. See the proof in [15]

1Here, the modulus function | · | is applied to a vector argument, whose
calculation is conducted in terms of each element of the input vector.

Applying Lemma 1, we consider the following quadratic
problem for a given w at each iteration

min
α

∥
2∑

i=1

αi∇fi(w)∥2

s.t. 1T
2 α = 1

12 ⪰ α ⪰ 02 (14)

whose solution is the desired adaptive coefficient vector α.
To solve (14), we first tackle the problem with all the other
constraints omitted except the equality constraint, given by

min
α̃
∥

2∑
i=1

α̃i∇fi(w)∥2 s.t. 1T
2 α̃ = 1 (15)

with α̃ ≜ [α̃1, α̃2]
T ∈ R2×1 being the vector containing the

solutions to (15). By using the Lagrange multiplier method,
the solution to (15) at the k-th iteration can be calculated by

α̃(k) = E(W(k−1))†e3 (16)

whose details are omitted to show because of the space
limitation. Herein, E ≜ [e1, e2]

T ∈ R2×3 with ei ∈ R3×1

being a vector composed of all zeros except the i-th element

equaling 1, W(k−1) ≜

[
2Ŵ(k−1)(Ŵ(k−1))H 12

1T
2 0

]
∈ C3×3,

Ŵ(k−1) ≜ [∇f1(w)|w=w(k−1) ,∇f2(w)|w=w(k−1) ]H ∈ C2×L,
w(k−1) denotes the vector obtained at the (k−1)-th iteration,
and ∇fi(w)|w=w(k−1) is the gradient of fi(w) at w(k−1).

To obtain α, we need to calculate α̃(k) via (16) and project
α̃ towards the feasibility set of (14). Calculating α̃(k) requires
determining the complex gradients of fi(w), i = 1, 2 with
respect to w, i.e., deriving ∇fi(w), i = 1, 2. The expression
of ∇fi(w), i = 1, 2 can be obtained by the following result.

Lemma 2. The complex gradient of f1(w) and f2(w) respec-
tively take the form given by

∇f1(w) =[σ(h1,x1)
T, · · · , σ(hM ,xM )T, σ̃(h1,x1)

T,

· · · , σ̃(hM ,xM )T]T ∈ C2LM×1 (17)

and

∇f2(w) = (ũ⊗ s)⊙ [σ(h1,q1)
T, · · · , σ(hM ,qM )T,

σ̃(h1,q1)
T, · · · , σ̃(hM ,qM )T]T ∈ C2LM×1 (18)

where ũ ≜ [1T
M ,0T

M ]T, and σ(·, ·) and σ̃(·, ·) are the
operators with two arguments. Without loss of general-
ity, we enforce the definitions given by σ(hm,qm) ≜
2
∑L−1

l=1−L SlhmhH
mSH

l qm + 2(γ1 − 1)hmhH
mqm − 2γ1c1hm

and σ̃(hm,qm) ≜ 2
∑L−1

l=1−L SH
l qmqH

mSlhm + 2(γ1 −
1)qmqH

mhm − 2γ1c1qm for m = 1, · · · ,M .

Proof. We expand f1(w) via (5) as the form given by

f1(w) =

M∑
m=1

L−1∑
l=1−L

xH
mSlhmhH

mSH
l xm + (γ1 − 1)

×
M∑

m=1

xH
mhmhH

mxm − γ1c1

M∑
m=1

(xH
mhm − hH

mxm). (19)
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Based on (19), we express the complex gradient of f1(w) with
respect to xm (denoted as ∇xmf1(w)) into the form as

∇xmf1(w) = 2

L−1∑
l=1−L

SlhmhH
mSH

l xm + 2(γ1 − 1)

× hmhH
mxm − 2γ1c1hm (20)

which is obtained via using the fact that the complex gradients
of items gHAg, gHf , and fHg with respect to g ∈ CL×1 are
respectively Ag, f , and 0L and enforcing g ≜ xm, A ≜∑L−1

l=1−L SlhmhH
mSH

l , and f ≜ hm. Using the same routine
as used for obtaining (20), we express the complex gradient
of f1(w) with respect to hm (denoted as ∇hmf1(w)) as

∇hmf1(w) = 2

L−1∑
l=1−L

L−1∑
l=1−L

SH
l xmxH

mSlhm + 2(γ1 − 1)

× xmxH
mhm − 2γ1c1xm. (21)

Substituting (20) and (21) into the fact that ∇f1(w) =
[∇x1

f1(w)T,· · ·,∇xM
f1(w)T,∇h1

f1(w)T,· · ·,∇hM
f1(w)T]T,

the expression of ∇f1(w) has the same form as (17).
Similarly, replacing xm with qm, after some straightforward

derivations, the expression of ∇f2(w) has the same form as
(18). The proof is complete.

Then, we project α̃ calculated by (16) towards the feasibility
set of (14), and the adaptive coefficient vector at the k-th
iteration can be updated by

α(k) = argmin
1T
2 α̂

12⪰α̂⪰02

∥α̂− α̃(k)∥2 (22)

which is an non-negative least squares problem and can be
directly solved the ‘lsqlin’ function in matlab.

B. Multiple-Gradient Descent Based Solution and Projection
Toward Constraints

The multiple-gradient descent based update on the reduction
of the objective function of (13), associated with α(k) at the
k-th iteration, can be expressed as

w(k) = w(k−1) − 1/η(k)∇f̃(w)|w=w(k−1) (23)

where η(k) serves as a adaptive step size for the com-
plex gradient descent based update, and ∇f̃(w)|w=w(k−1) =
(Ŵ(k−1))Hα(k). In general, a proper η(k) is desired to guar-
antee the descent of both f1(w) and f2(w), but it is difficult
to obtain directly. To solve this problem, we can adopt many
methods, for example, the multi-objective linear search method
(using a modified Armijo’s rule) in [16].

After obtaining the gradient descent based solution to min-
imize (13) by (23), the following task is to conduct proper
projections toward the constraints of (13). For the constraints
in the unimodular joint design, we just need to manipulate the
magnitudes of variable w to project towards the corresponding
feasibility sets. Technically, the projection scheme is given by

w(k)←:

M∑
m=1

(√
L̃

∥w(k)⊙um+M∥ (w
(k)⊙um+M )+ w(k)⊙um

|w(k)⊙um|

)
(24)

where um ≜ UT
m1L ∈ Z2LM×1.
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(b) Convergence speed: f2 case.

Fig. 1: Objective values versus number of iterations.

(a) Anti-jamming evaluation of FJDA. (b) Anti-jamming evaluation of MPWS.

Fig. 2: Target detection results of FJDA and MPWS.

IV. SIMULATIONS

In our simulations, we evaluate the performance of the
proposed algorithm (named hereafter as MPWS) and compare
it with that of FJDA algorithm in [10] and the algorithm in
[9] (named hereafter as JDMM). Throughout simulations, we
generate random sequences as initializations and use the same
for each comparison. Moreover, we apply FFT to the compared
algorithms if they allow for fast implementations, and use the
same acceleration scheme SQUAREM [17] except for JDMM.
The stopping criterion ϵ is chosen as the absolute difference
between two variables updated at neighboring iterations, which
is defined as ϵ ≜ ∥w(k) − w(k−1)∥2. In every example, the
repetition interval of sampling is T = 16 µs, and the ISRJ
sampling duration is τ = 2 µs. Additionally, the objective
values shown in dBs are calculated by the operator 20lg10(·).

Example 1: Convergence evaluation. In this example, we
study the convergence properties of FJDA, JDMM, and MPWS
in terms of the bi-objective values plotted versus the number of
conducted iterations. The values of f1 and f2 at each iteration
are normalized by the value obtained at initialization. The code
length of L = 64 is tested, and the number of waveform
is set as M = 1. The stopping tolerance is 10−5, and the
Pareto weight of FJDA is set as 0.8. Other parameters used
are: γ1 = 10, γ2 = 500, c1 = 53.849, δ = 60, ρ = 0.001,
c2 = 0.064, and L̃ = 64.

The corresponding bi-objective convergence results versus
the number of conducted iterations are shown in Fig. 1. It
can be seen from the figure that MPWS guarantees f1 and
f2 to decrease simultaneously as the number of iterations
increases. However, for FJDA and JDMM, the obtained f1
increases monotonically as the number of iterations increases.
Among the tested algorithms, MPWS shows the best conver-
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TABLE I: Comparisons of algorithms versus different code lengths and number of waveforms.

M = 1, L = 32 M = 1, L = 64 M = 1, L = 128 M = 2, L = 64 M = 4, L = 64 M = 6, L = 64
f1a f2b DR.c f1 f2 DR f1 f2 DR f1 f2 DR f1 f2 DR f1 f2 DR

FJDA 63.91 20.48 36.67% 76.44 31.26 63.33% 89.23 42.33 60% 82.62 37.17 40% 88.50 43.07 40% 92.09 46.66 17.67%
JDMM 66.35 36.73 100% 78.65 46.93 100% 90.81 57.24 100% - - - - - - - - -
MPWS 57.55 27.27 0% 70.47 35.29 0% 84.24 43.45 0% 73.61 48.31 0% 79.29 53.69 3.33% 80.63 57.28 0%

a f1: Average f1 value (in dB). b f2: Average f2 value (in dB). c DR. : The rate of an algorithm generates the solution dominated by at least one of the other solutions.

gence speed for objective function f1 and f2, respectively.
This example verifies the advantage of the proposed MPWS
algorithm over the other algorithms.

Example 2: Performance evaluation. We evaluate all tested
algorithms in terms of the average f1 value, average f2 value,
and dominated rate (the rate of an algorithm generates the
solution dominated by at least one of the other solutions).
The set of code lengths {32, 64, 128} is used for single
waveform design. For multiple waveforms design, the numbers
of waveforms are set as M ∈ {2, 4, 6}, and the code length is
L = 64. Other parameters are the same as used in Example 1.

The results of the performance evaluation versus different
code lengths and number of waveforms are shown in Table I. It
can be seen that the dominated rates of FJDA and JDMM are
higher than MPWS for all code lengths. For the comparisons
of algorithms versus different number of waveforms, FJDA
behaves the worst in terms of the average f1. For example,
the average f1 value obtained by FJDA is at least 9.01 dB
higher than that of MPWS.

Example 3: Anti-jamming performance evaluation. We eval-
uate the target detection results obtained by MPWS and FJDA
in terms of the image of target detection results with the
parameters L = 128, M = 100, γ1 = 10, γ2 = 550,
c1 = 83.4230, c2 = 0.0991, and L̃ = 76.8. The carrier
frequency is 1000 MHz, duty Ratio is 1/3, the pulse width is
16 µs, the sampling frequency is 8 MHz, the target is located
at the point (21, 192), and the time delay of jamming is 30
indices. Here, the Pareto weight of FJDA is set as 0.9. Other
parameters are the same as used in the last example.

The corresponding results are shown in Fig. 2. It can be
seen from the figure that all tested algorithms obtains true
target while the false target is suppressed. The normalized
jamming peak level, defined as the maximum level except for
the true targets in the image results, is suppressed by all tested
algorithms. The normalized jamming peak level of FJDA is
higher than that of MPWS, reaching at −11.76 dB while those
of MPWS is −15.48 dB. This example verifies the advantage
of the proposed MPWS algorithm over FJDA.

V. CONCLUSION

We have proposed a joint design of waveform and mis-
matched filter to ensure good target detection and anti-
jamming performances. Specifically, we employ the weighted
sum of the ISL and an SNRL-related penalty term as the
primary metric for target detection and the weighted sum of the
jamming integrated level and jamming peak level for jamming
suppression. This design is formulated into a generalized non-
convex bi-objective optimization problem with unimodular
constraints and energy restrictions. To solve it, we propose
an algorithm based on weighted objectives approach, which

involves dynamically determining adaptive weighting coeffi-
cients at each iteration and solving the reformulated problem
using a multiple-gradient descent based approach. Then, we
use projections scheme to address the constraints. Simulations
verify the effectiveness of our design.
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