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Abstract—Complementary codes have been proposed to
achieve ideal autocorrelation properties, which suppress side-
lobes and enhance radar performance. However, the practical
application of complementary sequences in radar systems is
limited due to their sensitivity to Doppler shifts. These shifts
introduce phase ramps, leading to slow-time mismatch and fast-
time compensation challenges, which degrade the ideal sidelobe
cancellation. This paper proposes a novel approach to address
these limitations by incorporating a polynomial phase constraint
in the design of complementary codes. The polynomial phase
constraint introduces a specific phase characteristic to the se-
quences, improving Doppler tolerance and preserving the ideal
autocorrelation properties. The optimization problem is then
solved using a majorization-minimization (MM) algorithm. Sim-
ulation results demonstrate that the proposed design effectively
mitigates Doppler-induced sidelobe degradation and improves
radar performance, offering a promising solution for radar
systems operating in dynamic environments.

Index Terms—Complementary Codes, Doppler tolerance,
Chirp-like sequences, Majorization-Minimization.

I. INTRODUCTION

Waveform design plays a crucial role in modern radar sys-
tems, influencing their detection, resolution, and target identi-
fication capabilities [1]. Among the various waveform design
approaches, phase coding techniques have gained significant
attention due to their ability to enhance radar performance
by mathematically reducing sidelobes [2]. Sidelobes pose a
significant problem in radar systems, as they can lead to
false detections and degrade the system’s ability to resolve
weak or distant targets [3]. Consequently, many studies have
recently focused on designing waveforms with low sidelobe
levels to improve radar performance. These studies often rely
on metrics such as Peak Sidelobe Level (PSL), Integrated
Sidelobe Level (ISL), Signal to Interference plus Noise Ratio
(SINR), and spectral compatibility, among others [4]-[10].

One effective solution to mitigate sidelobes is the use
of complementary codes [11]-[15]. Complementary codes
are pairs of waveforms with ideal autocorrelation properties,
which help suppress sidelobes and improve target detection.
These waveforms are particularly useful in applications where
the radar scene is relatively static, such as in weather radar
systems, where targets like precipitation or cloud formations
exhibit little motion [16]. Despite their theoretical advantages,
complementary pulse pairs are not widely used due to several
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practical drawbacks [14]. One of the main issues is their sensi-
tivity to Doppler shifts. Typically, the two pulses in a comple-
mentary pair are separated in time, and Doppler shift causes a
phase ramp that varies as a function of time [17]. This phase
ramp leads to two primary problems: (a) slow-time mismatch,
where the two pulses are centered on different average phases,
and (b) a phase ramp during each pulse, which requires fast-
time compensation. While slow-time mismatch can be handled
using conventional Doppler processing techniques that provide
phase compensation over time, fast-time compensation is more
challenging. Without proper fast-time compensation, the ideal
delay-sidelobe cancellation is lost, leading to the appearance
of near-range sidelobes. These near-range sidelobes increase
with longer codes and higher Doppler shifts, further compli-
cating the radar’s performance. Additionally, (c) the signal’s
periodicity extends from a single pulse Repetition Interval
(PRI) to multiple PRIs, thereby reducing the spacing between
recurrent Doppler lobes in the ambiguity function by the same
factor. Due to the aforementioned issues, the application of
complementary sequences is constrained. Nevertheless, they
find utility in radar-based atmospheric sensing, where target
radial velocities remain relatively low [18].

In this paper, we propose a novel approach to address
these challenges by designing complementary codes with a
polynomial phase constraint. By introducing this constraint,
we aim to mitigate the effects of Doppler shift, preserving
the autocorrelation properties of complementary codes while
enhancing their robustness in dynamic radar environments.
This approach offers a potential solution to overcome the
sensitivity issues associated with complementary pulse pairs
and improve the performance of radar systems in a variety of
operating conditions.

As to the background to this study, in [19] by minimizing
PSL and ISL metrics, we design sequences with polynomial
phase constraint for Single Input Single Output (SISO) radar
systems. In [20] we extend our approach for designing se-
quences for Multiple Input Multiple Output (MIMO) radars,
while minimizing the ISL. In this paper, we focus on designing
complementary codes with the polynomial phase constraint.
The polynomial phase constraint provides a new degree of
freedom in the waveform design process, where, from a poly-
nomial of degree @, it imbibes a specific phase characteristic
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in the [-th sub-sequence of the p-th transmit pulse across M,
pulses in a Coherent Pulse Interval (CPI). When Q = 2, we
design chirp-like sequences, which inherently possess Doppler
tolerance properties.

A. Notations

Matrices are represented by bold uppercase letters, column
vectors by bold lowercase letters, and scalars by italics. The
sets Z, R, and C signify the integer, real, and complex fields,
respectively. The functions $(-) and 3(-) extract the real and
imaginary parts, respectively, and arg(-) gives the phase of a
complex number. The notations (-)7, (-)*, (-), and (-) stand
for transpose, complex conjugate, conjugate transpose, and
pseudo-inverse, respectively. ® stands for hadamard product
and optimal value of an optimization variable is represented
as (-)* . The element in the i*" row and j** column of a
matrix is denoted by x; ;, while z; represents the it" element
of the vector x. Diag(X) creates a column vector containing
all diagonal elements of X, and Diag(x) forms a diagonal
matrix, where x forms the principal diagonal elements of the
matrix. Lastly, vec(X) stacks all the columns of X into a
single column vector.

II. PROBLEM FORMULATION

Let wus consider a sequence set X =
(X1, Xp, ..o, X0,] € CN*Mp with M,, sequences and
each sequence of length N, where x, = [21,p,...,2n,|T =
X o X] s xp J7 € CN. A distinctive phase

behavior is introduced in the [-th sub-sequence X;, € cM,
of the p-th sequence by imposing a polynomial phase
constraint expressed as arg(X;p) = > a{q,1,p}m?, Where
arg(x1p) = [arg(Tg4a—1)mp})s - - - (T py)]s Afqip)
denotes the coefficients of the polynomial of degree q for the
l-th sub-sequence in the p-th pulse. The phase variation for
all the M,, sequences can be compactly represented as A,
where each of its element is agg; 3

We consider the Complementary Integrated Sidelobe Level
(CISL) metric [21], defined as

N—-1, Mp 2
CISL =Y " |> rpp(k)] , (1)
k=1 'p=1
N-—k * *
where Tpvp(k) = Zn:l L{n+k,p}Tnp Tp,p(_k)vp =

1,.. . Mp,k=1-N,...,N—landn=1,...,N.
Hence, the objective is to address the following optimization
problem,

CISL

min
AERQ XLXMp

Q
subject to  arg(X;p) = Z:a{q,l,p}mq7
q=0

P n=m+(—-1)M, @)
I=1,...,L,
|znpl =1,V
’ m=1,..., M,
p=1,...,M,.

III. PROPOSED METHOD
The objective in (2) along with the constraint (|z,, ,| =
1) after several majorization steps simplifies to an iterative
optimization problem (for details refer [21]) where the i-th
step involves
lz—y I3,
Q
subject to arg(x;,) = Za{q’l,p}mq,
q=0

min
A

n=m+ (I —-1)M, 3)

l=1,...,L,
|znp| =1,V
’ m=1,..., M,
p=1,...,M,,

where z = [x7,0%_,,.. .xTMp,O%_l]T € CMrN-1) y =

(K = )M,N + \,)zD — Rz, Let K = M,(2N — 1),
be the length of z, Uy, k= 1-K,...,K—1be K x K
Toeplitz matrix, and R is a Hermitian Toeplitz matrix. Other
additional parameters are defined in Table I. Parameters f and
r can be evaluated using standard FFT/IFFT operation.

TABLE I: Additional parameters for equation (3) [20], [21].

[ S.No[ Parameter] Expression |
_s2nkw ~ ~
1 Fop=e 28 ,0<nk<2K
2 £ Flz0",01,,]7
3 r il . S FHf]2 s
4 c rQ[O’1N—1702(Mp(2N71)7N)+171N—1]
5 " Fec,
6 Au %( max_ f2; + max_ MQi—l)
1<k<K 1<k<K
1ifj—i=k .
7 Uk J ~ij=1,...,K
0 ifj—ik,
8 2 (k) z'U;z, k=1-K,... K1
- 1,1<k<N-1 _
9 wy, SEEN T iR
0, N<k<K,
K—1 z
10 R ch:"l,f(wfc”(fk)Ufc
k0

As (3) is separable in the variables composing the sequence,

the objective O =| z —y |3 can now be split into M,
subproblems and represented as
MD(QN_l)
0= Z |zn/—yn/|g,
n’/=1
N 3N-1
=2 lew —ywli+ D Lo —ywl3 “
n/=1 n/=2N

N+(M,p—1)(2N—1)

D

n/=1+(M,—1)(2N—1)

L |27 —y7l/|§—|— cnst.

By omitting the terms independent of the optimization vari-
able, the objective can be written as

M,
O=01+..40,+...40p, =»_ 0, (5
p=1
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Each of the M, objectives are independent and can be
solved in parallel. In (5) for brevity of expression, we consider
the minimization of the p-th objective O,, as

N+(p—1)(2N-1)

2. -

n=1+(p—1)(2N—-1)

min pn,pejw"m@. (6)

A{q,l,p}

The objective O,, for the p-th pulse is further separable in the
sequence variables, therefore it is split into L parallel sub-
problems corresponding to each sub-sequence as:

Op:Op,1+...+0pyl+...+0pﬂL. @)

Now, we introduce the constraints of Problem P in O
directly in the entries of the sub-sequence. Hence,

M
Opi = 3 |/ S0 ttatmm® _ . eivnsf2  (8)

m=1
After simplifying the objective in (8), the reformulated
problem can be represented as

min — [ Z Prn,p COS (Z agq. p}m ’(/Jn’p> ] 9)

A{q,l,p}

Now, letl O p Z?:o agq1,pyMm? — Ynp. A majorizer
9(0n.p,05) of the function f(6,,) = —pn.p cos(6y ) at the
i-th iteration of majorization can be obtained as
9(Onp, 957,)17) = —Pnp Cos(ev(z%)
+ (Hnyp — 9%,) Prp sin(ﬁgf}p)

1 02 .
5 (Onp = 02,) pupcos(6),)

Employing this majorizer function, at the ¢-th iteration of
the Majorization-Minimization (MM) algorithm, the surrogate
optimization problem after converting the objective in (10) into
a perfect square form can be expressed as

2
min Z [pnpcos (Z afq1p} ™M ) - bmpl

a{qu}
(11)

(10)

where
bnp = Pnp Cos(eg,)p) (wn,p + 955,)1)) ~ Pnp Sin(e’l(’ti,)p)'

Now, considering a generic pulse index p and [-th sub-
sequence, let

n:@z&~~M}ezM

Yy = prpcos(0L) O [1,---, 1]7 e RM,

A = Diag (v,)[n",--- ,n?] € RM*(@TD  (12)
S = [a{O,l,p}a te 7a{Q,l,p}]T S RQ+1;
b= [b17p, R ,b]LLp]T (S RM.

In this context, 9 signifies that all elements of 7 are elevated
to the power ¢ individually, with ¢ spanning from 0 to ). By

using the variables defined in (12), the optimization problem
in (11) is

min | As —b |3 (13)

which is the standard least squares problem. The iterations are
(i4+1) _

terminated with the following criterion:

X® ||< €) where ¢ = 1076, The implementation details of

the proposed method are summarized in algorithm 1.

Algorithm 1 Algorithm for complimentary sequence set de-
sign with polynomial phase characteristic in every sequence

1: Require: M, N, Q,Am

2 K=M »(2N —1)

3: Set ¢ = 0, initialize )2(0)

4: while stopplngr criterion is true do
5 72 — x! (%) .07, &7 ]

€ CMp(2N-1)

VIR
6: Calculate F,.c,u, )\ from TABLE I
7y = (K = DM,N + A,)z® — Ra
8: for p < 1 to M,, do
o0y =[5 T, 5, 5 )T)
o3 =TT T e O
11: for [ < 1to L do
12: P =yl
13: ¥ = arg(yi,p)
14: 0., = ZqQ:O agmd —y, m=1,....M
15: b = pm €08(0m) (W + 0,1) — pimsin(6,,)
16: n=1[1,23,--- ,M"T ez
17: ~ = pmcos(fm) O [1, - 71]T € RM
18: A = Diag (7)[n° n',--- ,n?) € RM*QTL,
19: s = [ag, a1, ,ag]T € RO
20: bZ[bl,bQ,"' ,b]\{}TERM
21: s* = A(Mb (Least Squares Operation)
2 g = Ast e CM
23: end for o i -
o2t vt =,y
25: end for ‘ _
26: y(i+D) = [~1T<z+1) 7 SIIT(M)’ . 7§/Tv(1:r1) 7 }:,TM(:rl)]T
27 allp) = el w st
28: end while
29: i i+1

30: return X(+1)

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
method and compare it with the state-of-the-art methods.

A. Waveform Characteristics

Firstly, we evaluate the convergence characteristics of
Algorithm-1 using the input parameters: N = 64, M = 32,
M, = 2 and Q = 2. The convergence of the objective
function can be observed in Fig.1a. It demonstrates monotonic
convergence throughout 10° iterations. The corresponding
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iterations

(a) Objective convergence; Algorithm-1

auto-correlation

-40 -30 -20 -10 0 10 20 30 40

(b) CISL reduction
5 T T T

phase [rad]

20 I I I I I I
0 5 10 15 20 25 30 35

code index
(c) Unwrapped Phase

Fig. 1: Sequence set design with quadratic phase behavior
(Q = 2) in each sub-sequence using Algorithm-1

auto-correlation derived by coherent superposition of the auto-
correlation response of each sequence in the sequence set
is shown in Fig.1b (labeled: r-css). It has lower sidelobe
levels due to the complementary nature of the sidelobes of
each sequence. Furthermore, after applying the phase unwrap
operation to every optimal sequence, a distinct quadratic phase
pattern emerges within each sub-sequence, as illustrated in
Fig.1c. This characteristic phase behavior contributes to the
Doppler tolerance discussed in the subsequent section.

B. Doppler tolerance characteristics

The Doppler tolerance of the synthesized transmit sequence
set is examined under various input conditions and assessed
using the methodology outlined in [22]. For a given waveform
x(t), the narrowband ambiguity function S as a function of

relative lag 7 and Doppler shift fp is

o] 2

S(t, fp) = ’ / eI Ity (t)2* (t + 7)dt (14)

To facilitate analysis, a reference point on the ambiguity
function S is selected, ensuring applicability to any constant
amplitude waveform. A cross-section of the ambiguity func-
tion along the Doppler axis is extracted at the zero-delay cut,
wherein the first Doppler null is designated as the reference
point. This null is observed at fp = +1/T, where T is the
pulse width. Subsequently, the maximum value of (14) across

0 T
— o R
5k M ]
) Seed -=[21]
=, --CS-PECS
5-10F
§
-15+
-20k& . . \ ! j
0 100 200 300 400 500 600

sequence length, N

Fig. 2: Comparison of Doppler tolerance using ¥eqn With
(21]

the delay axis is identified for the specified Doppler shift
fp = £1/T. This approach guarantees that the characteristic
ridge of the ambiguity function, if present, is captured while
ensuring that the global peak remains unconsidered.

To quantify the Doppler tolerance of a given waveform, the
metric ¢ is introduced and defined as ¢ = 10log,,(n(fp =
1/T))dB where

S(T, fD)

5(0.0) (15

n(fp) = max

This metric provides a measure of the waveform’s resilience to

Doppler-induced distortions, offering insight into its suitability
for applications requiring Doppler robustness.

The variation in Doppler tolerance, ¢ with @ € [1,2,3,4] in

TABLE II is presented. The input parameters for the sequence

set generation are N = 64, L = 1, and M,, = 4. Uniquely

My
for () = 2, the mean value of ¥, Vean = (E;lilw), has the
highest value. Other values of @ (i.e. @ = 1,3, and 4), gives
rise to low values of ¥;,cqyn and show high Doppler sensitivity
of the sequence set.

Further, in Fig. 2, we compare the performance of the
proposed method (labeled “CS-PECS”) with another algo-
rithm proposed in [21], by evaluating t.,,cqn for each input
configuration, N = [64, 128,256, 512], and M,, = 4. Here,
it is apparent that the Doppler tolerance for the proposed
algorithm (with N = M, L = 1 and Q = 2) is the highest
and outperforms the counterpart. This exhibits the significance
of quadratic phase behavior in deriving Doppler tolerance
characteristic.
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TABLE II: Doppler tolerance variation with different values
of () for a sequence set with parameters: N = 64, L = 1, and
M,=4

—13.11dB
—10.85dB
—15.17dB
—14.76dB

—9.85dB —3.26dB —12.36dB

V. CONCLUSION

In this paper, we presented a mathematical approach to
enhance the performance of complementary codes in radar
systems by incorporating a polynomial phase constraint. This
method addresses the sensitivity of complementary sequences
to Doppler shifts, which typically lead to degradation in
autocorrelation properties and sidelobe cancellation. By in-
troducing a polynomial phase constraint, we were able to
improve the Doppler tolerance of the complementary codes
while preserving their ideal autocorrelation characteristics. The
optimization problem was solved using the MM algorithm.
Simulation results confirmed that the proposed design ef-
fectively mitigates Doppler-induced sidelobe degradation and
offers improved radar performance in dynamic environments.
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