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Abstract—In this paper, we propose a joint design of a
unimodular waveform and a mismatched filter to suppress
interrupted sampling repeater jamming (ISRJ).The goal of our
design is to achieve high target detection accuracy, effective
ISRJ suppression, and robustness against variations in ISRJ
forwarding times, while effectively controlling signal-to-noise ratio
loss caused by mismatched filter. To satisfy all the aforementioned
requirements, we employ a weighted sum of three metrics related
to integrated sidelobe level, jamming integrated level, and signal-
to-interference-plus-noise ratio as the objective. Based on this, we
formulate the joint design as a non-convex optimization problem
with constraints on waveform modulus, filtering energy and
mainlobe peak level. To address this problem, we reformulate the
optimization as minimizing the expected value of the objective
over ISRJ forwarding times and apply the stochastic majorization-
minimization technique. This approach involves sampling ISRJ
forwarding times from the specified interval and systematically
transforming the reformulated problem into a sequence of distinct
sub-problems based on these samples. Our contributions also lie
in elaborating the majorant for each sub-problem and deriving a
closed-form solution. Simulation results verify the effectiveness
of the proposed design.

Index Terms—Interrupted sampling repeater jamming (ISRJ),
robust joint design, stochastic majorization minimization (SMM).

I. INTRODUCTION

Interrupted sampling repeater jamming (ISRJ) has emerged
as a major issue in radar applications. This jamming technique
generates a series of false targets after pulse compression, effec-
tively masking real targets [1]. Consequently, ISRJ suppression
has become a prominent research topic in recent years [1]–
[3]. Traditionally, the primary focus of ISRJ suppression is to
counter both the barrage and deception effects. However, the
increasing complexity of jamming patterns and the variability
of jamming parameters have made accurate target detection
significantly more challenging. To handle these issues, extensive
studies have been devoted to ISRJ suppression, with advanced
approaches continuing to be developed.

To address the significant challenges posed by ISRJ, nu-
merous studies on ISRJ suppression have been reported [4]–
[11]. Early works mainly focus on passive jamming mitigation
at the receive end [4], utilizing feature-based analysis tools
to identify and suppress jamming components. However,
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these methods do not guarantee the quality of transmitted
waveforms, such as good correlation levels and high resolution.
To address this problem, strategies based on waveform design
[5], [6] or joint design of waveforms and receive filters [7]–
[10] have been employed. The joint design approach, which
leverages waveform agility and mismatched filtering, provides
additional degrees of freedom for the design task and achieves
better jamming suppression capability compared to designing
waveform or filter alone. Technically, many works focus on
minimizing integrated sidelobe level (ISL) [7]–[9] or peak
sidelobe level to enhance jamming suppression capability [10].
However, the aforementioned methods heavily rely on accurate
estimation of jamming parameters, limiting their effectiveness
in highly dynamic or uncertain environments. To tackle this
issue, some recent works have explored the extended waveform
domain [11]. However, the joint design method with robustness
against uncertain jamming parameters and excellent correlation
properties has rarely been studied in existing literature.

In this paper, we propose a joint design of the unimodular
waveform and the mismatched filter for ISRJ suppression,
which can adapt to ISRJ forwarding times that are distributed
within a specific interval and follow an unknown distribution.
We aim to achieve excellent target detection and jamming
suppression capabilities, while maintaining robustness against
ISRJ forwarding times. To this end, we formulate a joint design
that minimizes a weighted sum of three metrics related to ISL,
JIL, and SINR as a non-convex problem with constraints on
SNRL and mainlobe peak level. Then, we reformulate the
objective as an expectation form and iteratively decompose the
non-convex problem into a set of tractable sub-problems using
samples of ISRJ forwarding times. To solve it, we choose
a proper majorant for each sub-problem and finally derive
a closed-form solution via SMM technique [12]. Simulation
results verify the superiority of our method.

Notations: We use | · |, ∥ · ∥, (·)∗, (·)T, (·)H, tr{·}, vec(·),
ℜ{·}, arg(·), λmax(·), Em{·}, ⊙, and ⊗ to denote modulus,
Euclidean norm, conjugate, transpose, conjugate transpose,
matrix trace, column-wise vectorization, real part, argument of
a complex vector, largest eigenvalue of a matrix, mathematical
expectation with respect to a random variable m, Hadamard
product, and Kronecker product, respectively. In addition, IN
and 1N denote the N ×N identity matrix and the N -length
vector of all ones, respectively.
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II. SIGNAL MODEL AND PROBLEM FORMULATION

Let us consider the design of a unimodular waveform of
code length N . We denote the waveform vector by x ≜
[x(1), . . . , x(N)]

T ∈ CN×1, whose n-th element is expressed
as ejψ(n). Here, ψ(n) is the phase of the n-th element, which
takes an arbitrary value ranging between −π and π.

The ISRJ signal serves as a discretized and repeated version
of the transmitted waveform, generated by sampling and repeat-
edly forwarding intercepted slices. To mathematically express
the sampling and forwarding methods of ISRJ generation, we
use Φm ≜ IP ⊗ Am with Am ≜ [0,01×m;1m×1,0m×m] ∈
R(1+m)×(1+m) to denote the ISRJ pattern matrix with respect
to forwarding times m. Here, P is the number of sampling
slices, satisfying P (1 + m) = N . Based on this, the ISRJ
signal can be expressed as the product of the pattern matrix
and transmitted waveform, which is given by

x̃m = Φmx (1)

with m ∈ M and M ≜ {1, . . . , N − 1} being the set of
possible values of ISRJ forwarding times.

At the receive end, considering the target and jamming
components, and stacking the data into a vector, the overall
receive data vector r ∈ CN×1 can be expressed as

r = αtx+ αjx̃m + n (2)

where αt and αj denote the complex amplitudes of echoes
from the target and jammer, respectively. Here, n ∈ CN×1 is
the noise vector satisfying n ∼ CN (0, σ2

n), with σ2
n being its

variance. Subsequently, the mismatched filter with the weight
vector w ∈ CN×1 is applied to the received data vector r.
Hence, the signal-to-interference-plus-noise ratio (SINR) at the
output of the filter can be expressed as

ζSINR ≜
|αt|2 · |wHx|2

|αj |2 |wHx̃m|2 + σ2
nw

Hw
. (3)

The design is expected to exhibit good correlation properties,
thereby ensuring accurate extraction of real targets of interest.
To this end, we use the integrated sidelobe level (ISL) metric
to evaluate sidelobe suppression capability, defined as

ζISL ≜
∑
l∈Ωs

|wHJlx|2 (4)

where Ωs represents the discrete delay set of the sidelobe region
and Jl ≜

[
0l×(N−l), Il×l;0(N−l)×(N−l),0(N−l)×l

]
∈ RN×N .

Meanwhile, the design is also expected to have excellent
anti-ISRJ capability. To this end, we employ the jamming inte-
grated level (JIL) metric to characterize the ISRJ suppression
performance, which is given by

ζJIL ≜
∑
l∈Ω

|wHJlx̃m|2 (5)

where Ω represents the set of all discrete delays.
We aim to simultaneously suppress ISRJ and ensure radar

detection performance with robustness to variable ISRJ forward-
ing times. To this end, the aforementioned metrics in (3), (4),
and (5) are of interest. Consequently, we employ the weighted

sum of ζISL, ζJIL, and 1/ζSINR as the objective function, whose
expression is given by

ζ(x,w,m) ≜ δ̃(ϵ ζISL + (1− ϵ) ζJIL) + (1− δ)(1/ζSINR)

= δ̃
(
ϵ
∑
l∈Ωs

|wHJlx|2 + (1− ϵ)
∑
l∈Ω

|wHJlΦmx|2
)

+ (1− δ) |αj |
2 |wHΦmx|2 + σ2

nw
Hw

|αt|2|wHx|2
(6)

where δ and ϵ denote the weighting factors, δ̃ ≜ δ/N2. Here,
the second equality is derived by substituting (1), (3), (4), and
(5) into the first equality of (6).

The signal-to-noise ratio loss (SNRL) caused by the mis-
matched filter is also crucial for radar systems to detect weak
targets, and it is expected to maintain a specified level. To this
end, we use ζSNRL to evaluate the gain loss, defined as

ζSNRL ≜ 10 log10

(
|wHx|2

(wHw) (xHx)

)
. (7)

The goal of the design is to find a solution that minimizes
ζ(x,w,m) while guaranteeing good SNRL performance. To
this end, we propose the joint design given as follows1

min
x,w,∀m∈M

ζ(x,w,m) (8a)

s.t. wHx = N (8b)

∥w∥2 = γ0N (8c)
|x| = 1 (8d)

where the constraint (8b) controls the mainlobe peak level, the
constraint (8c) restricts the power of mismatched filter to a
constant γ0N , and the constraint (8d) guarantees the constant-
modulus property for each waveform element. Based on (8b)-
(8d), the SNRL metric in (7) can be precisely controlled by
adjusting γ0, i.e., ζSNRL = −10 log10(γ0).

III. EFFICIENT JOINT DESIGN VIA STOCHASTIC
MAJORIZATION MINIMIZATION

Considering that the ISRJ forwarding times m in (8) are
randomly distributed in a specific range following an unknown
distribution, we exploit the idea of SMM [12] to handle the
non-convexity and parametric uncertainty of (8). Specifically,
we first reformulate the objective (8a) as an expectation with
respect to ISRJ forwarding times, whose optimization variable
is redefined as a joint sequence of the waveform and filter.
Then, we obtain a set of samples from the known interval
of ISRJ forwarding times, and iteratively select individual
sample points from this set to construct sub-problems, each
corresponding to a specific sample point. Based on this, we
iteratively decompose the expectation-based problem into a
series of distinct sub-problems. For each sub-problem, we
transform its quartic objective into a quadratic form, based
on which we derive a proper majorant for the reformulated
objective. Then, we update the approximate majorant, which is

1Here, the modulus | · | is applied to a vector argument, whose calculation
is conducted on each individual element of the input vector. The same type of
operations for ej(·) and arg(·) are used throughout the paper.
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in fact a weighted average of previously computed majorants.
By minimizing the approximate majorant and projecting the
constraints onto corresponding feasibility sets, we can finally
derive a closed-form solution. In the following, we elaborate
the specific procedures for solving (8).

Since the ISRJ forwarding times m typically vary with the
jammers in practice, we consider optimizing the expected form
of (8a) to enhance the robustness of the joint design against
varying ISRJ forwarding times. To this end, we use ζ̃(x,w) ≜
Em{ζ(x,w,m)} with m ∈M to denote the expectation-based
objective. For simplicity, we optimize both the transmitted
waveform and the mismatched filter simultaneously, i.e., y ≜[
wT,xT

]T ∈ C2N×1. Hence, we can rewrite the expectation-
based objective ζ̃(x,w) as follows

ζ̃(y) = δ̃
(
ϵ
∑
l∈Ωs

|yHJ̃ly|2 + (1− ϵ)Em
{∑
l∈Ω

|yHVl,my|2
})

+ (1− δ)Em
{
|yHV0,my|2

}
(9)

where J̃l ≜ [0N×N ,Jl;0N×N ,0N×N ] ∈ R2N×2N , Vl,m ≜
Φ̃H
mJ̃lΦ̃m with Φ̃m≜ [IN×N ,0N×N ;0N×N ,Φm]∈R2N×2N .

Based on this, the expectation-based problem is written as

min
y

ζ̃(y) (10a)

s.t. yHJ̃0y = N (10b)

∥y ⊙ u∥2 = γ0N (10c)
|y ⊙ ũ| = 1 (10d)

where u≜
[
1T
N ,0

T
N

]T∈R2N×1 and ũ≜
[
0T
N ,1

T
N

]T ∈ R2N×1.
We adopt an iterative approach to solving (10) using a cyclic

algorithm based on the SMM framework, which optimizes the
objective over one specific sample at each iteration. Specifically,
we first choose K samples of ISRJ forwarding times m from
M, denoted as {mk ∈ M}Kk=1. Then, we select the k-th
sample point mk from the set at the k-th iteration to formulate
the k-th sub-problem. Moreover, we use the penalty function
method to address the constraint (10b). Therefore, the k-th
sub-problem of (10) with m = mk can be expressed as

min
y

ζ̃(y)|m=mk
+ λ0|yHJ̃0y −N |2 (11a)

s.t. ∥y ⊙ u∥2 = γ0N (11b)
|y ⊙ ũ| = 1 (11c)

where λ0 is the penalty factor.
In order to solve (11), we adopt the idea of selecting a proper

majorant for its objective, and then solve the corresponding
problem by means of SMM technique. Since the procedure
is the same for each value of m, the index m is omitted for
brevity. Before handling (11), we present the following lemma.

Lemma 1. If a real-valued function f(z) with respect to a
complex variable z ∈ CN×1 takes a quartic form, i.e., f(z) =
|zHLz|2 with |z| = 1, the following function

g(z) =2ℜ
{
zH

(
(zH0 Lz0)

∗ L+ zH0 Lz0 L
H − 2λmax

(
vec(L)

× vecH(L)
)
z0z

H
0 − 2

∣∣zH0 Lz0∣∣ IN)
z0

}
(12)

Algorithm 1 Joint Design Algorithm via SMM

1: Initialization: y(0), K, βk, s̃(0) ← y(0), s̄(0) ← y(0).
2: for k = 1 : K do
3: Draw a sample mk ∈M and calculate Q(k) via (16).
4: Update s(k), s̃(k), s̄(k), and y(k) via (21)-(25).
5: end for

serves as a majorant for f(z) at any given z0 ∈ dom(f).

Proof. For brevity, let us denote Z ≜ zzH and L̃ ≜
vec(L)vecH(L) to facilitate derivation. Since zHLz = tr{LZ}
and tr{LZ} = vecH(Z)vec(L), we can rewrite f(z) into a
quadratic form, given by f(z) = vecH(Z)L̃vec(Z). Using the
fact that a quadratic form cHDc can be majorized at any given
point c0 in its feasibility set by cHGc+2ℜ{cH(D−G)c0}+
cH0 (G−D)c0 [13] and enforcing c ≜ vec(Z), c0 ≜ vec(Z0),
D ≜ L̃, and G ≜ λmax(L̃) IN , we can derive that

f(z) = vecH(Z)L̃vec(Z) ≤ vecH(Z)Gvec(Z) + vecH(Z0)

× (G− L̃)vec(Z0) + 2ℜ
{
vecH(Z)(L̃−G)vec(Z0)

}
(13)

with Z0 ≜ z0z
H
0 . Substituting vecH(Z)L̃vec(Z0) =

tr{ZHL} tr{LHZ0} and 2ℜ{(zH0 Lz0)∗ zHLz} = zHL̂z with
L̂ ≜ (zH0 Lz0)

∗ L + zH0 Lz0 L
H into (13), the majorant for

f(z) at any point z0 ∈ dom(f) can be rewritten as f(z) ≤
zH

(
L̂− 2λmax(L̃)z0z

H
0

)
z, which can be further majorized by

g(z) = 2ℜ
{
zH

(
L̂−2λmax(L̃)z0z

H
0 −2

∣∣zH0 Lz0∣∣ IN)
z0
}

(14)

by enforcing c ≜ z, c0 ≜ z0, D ≜ L̂ − 2λmax(L̃)z0z
H
0 , and

G ≜ 2
∣∣zH0 Lz0∣∣ IN . The majorant in (14) has the same form

as (12) after substituting the explicit expression of the matrices
L̂ and L̃ back. The proof is complete.

We apply Lemma 1 to (11a) for the elaboration of its
majorant. Toward this end, we present the following result.

Lemma 2. The majorant for (11a) takes the form given by

g(y) = 2ℜ{yHQ(k) y(k−1)} (15)

where y(k−1) denotes the sequence obtained by solving the
sub-problem at the last iteration, and

Q(k) ≜ ϵδ̃ T {y(k−1), J̃l,Ωs}+ (1− ε)δ̃ T {y(k−1),Vl,Ω}
+(1− δ)T {y(k−1),V0, {0}}+ λ0T {y(k−1), J̃0, {0}} (16)

with T {·, ·, ·} being the operator that denotes the repeated
calculation involved in the majorant for (11a). Taking T {·, ·, ·}
with the first set of input parameters on the right-hand side of
(16) as an example, we enforce its definition given by

T
{
y(k−1), J̃l,Ωs

}
≜

∑
l∈Ωs

((
(y(k−1))HJ̃ly

(k−1)
)∗
J̃l

+ (y(k−1))HJ̃ly
(k−1)J̃H

l

)
− 2Ny(k−1)(y(k−1))H

−
∑
l∈Ωs

2
∣∣(y(k−1))HJ̃ly

(k−1)
∣∣. (17)

The other operators in (16) can be obtained from the example
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TABLE I
PERFORMANCE COMPARISONS VERSUS DIFFERENT CODE LENGTHS.

N = 32 N = 64 N = 128
ISLa JIL JPL SINR ISL JIL JPL SINR ISL JIL JPL SINR

MIAJS-MM −0.79 dB −5.92 dB −17.98 dB 19.42 dB −0.64 dB −7.64 dB −20.63 dB 20.34 dB −1.32 dB −9.42 dB −25.16 dB 22.16 dB
DCADPM −1.42 dB −8.74 dB −20.18 dB 17.83 dB −1.85 dB −9.46 dB −21.85 dB 19.92 dB −2.26 dB −10.38 dB −27.63 dB 23.49 dB
Proposed −2.89 dB −11.82 dB −23.40 dB 23.63 dB −2.52 dB −12.65 dB −25.38 dB 25.13 dB −3.46 dB −14.96 dB −31.54 dB 29.93 dB

aNormalized PSL value obtained after iterations (in dBs). The same operations for ISL, JIL, JPL, and SINR values are applied in all tables.

TABLE II
JIL PERFORMANCE OF THE ALGORITHMS TESTED VERSUS DIFFERENT ISRJ FORWARDING TIMES.

m = 10 m = 15 m = 20 m = 25 m = 30 m = 35 m = 40 m = 45 m = 50 m = 55 m = 60
JDA-ADMM −6.67 dB −7.26 dB −9.67 dB −11.56 dB −12.72 dB −18.47 dB −12.53 dB −12.16 dB −10.32 dB −9.58 dB −9.37 dB
MIAJS-MM −10.74 dB −10.98 dB −11.43 dB −11.26 dB −13.37 dB −20.34 dB −14.12 dB −13.96 dB −14.38 dB −13.51 dB −14.43 dB

Proposed −19.20 dB −20.83 dB −21.17 dB −20.99 dB −20.85 dB −22.85 dB −22.05 dB −22.95 dB −22.70 dB −22.24 dB −22.50 dB
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Fig. 1. Convergence speeds.
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(17) by substituting the corresponding input parameters. Specif-
ically, the other three individual operators T {y(k−1),Vl,Ω},
T {y(k−1),V0, {0}}, and T {y(k−1), J̃0, {0}} can be ob-
tained by replacing {y(k−1), J̃l,Ωs} with {y(k−1),Vl,Ω},
{y(k−1),V0, {0}}, and {y(k−1), J̃0, {0}}, respectively.

Proof. For brevity, let us denote (11a) as ζ̂(y). Using (9), we
can expand ζ̂(y) in the form as follows

ζ̂(y) = ϵ δ̃
∑
l∈Ωs

|yHJ̃ly|2 + (1− ϵ) δ̃
∑
l∈Ω

|yHVly|2

+ (1− δ) |yHV0y|2 + λ0 |yHJ̃0y −N |2. (18)

Using Lemma 1, the first term of (18) can be majorized by

g1(y) = 2ϵδ̃ℜ
{
yH

( ∑
l∈Ωs

((
(y(k−1))HJ̃ly

(k−1)
)∗
J̃l

+ (y(k−1))HJ̃ly
(k−1)J̃H

l

)
− 2Ny(k−1)(y(k−1))H

−
∑
l∈Ωs

2|(y(k−1))HJ̃ly
(k)|

)
y(k−1)

}
(19)

which is reformulated as 2ϵδ̃ℜ{yHT {y(k−1), J̃l,Ωs}y(k−1)}
by utilizing the operator T {·, ·, ·} defined in (17). Similarly,
by replacing the set {y(k−1), J̃l,Ωs} of the operator with
{y(k−1),Vl,Ω}, {y(k−1),V0, {0}}, and {y(k−1), J̃0, {0}},
respectively, the other three components of (18) can be ma-
jorized by g2(y) = 2(1− ϵ)δ̃ℜ{yHT {y(k−1),Vl,Ω}y(k−1)},
g3(y) = 2(1− δ)ℜ{yHT {y(k−1),V0, {0}}y(k−1)}, and also
g4(y) = 2λ0ℜ{yHT {y(k−1), J̃0, {0}}y(k−1)}. Based on the
derivation above, we can finally obtain the overall majorant
for ζ̂(y) as presented in (15). The proof is complete.

Till now, using Lemmas 1 and 2, we can rewrite the k-th
sub-problem (11) in the form as

min
y

2ℜ{yHQ(k)y(k−1)} (20a)

s.t. ∥y ⊙ u∥2 = γ0N (20b)
|y ⊙ ũ| = 1. (20c)

The majorization-based update for minimizing the objective
(20a) at the k-th iteration can be expressed as

s(k) = −Q(k)y(k−1). (21)

For simplicity, let us denote the majorant (15) as g(k). In order
to handle the expectation-based objective of (10), we consider
minimizing the approximate majorant, which is the weighted
average of previously computed majorants. Based on this, the
approximate majorant at the k-th iteration is defined as

g̃(k) ≜ (1− βk) g̃(k−1) + βk g
(k) (22)

where βk is the weight at the k-th iteration, and its empirical
value βk ≜

√
K + 1 /

√
K + k has been shown to be effective

[12]. Subsequently, by minimizing the approximate majorant
(22), the update at the k-th iteration can be given by

s̃(k) = (1− βk) s̃(k−1) + βk s
(k). (23)

In order to further improve the convergence rate of our proposed
method, we apply an averaging scheme [12] to handle the
reformulated convex objective (22). To this end, by defining
θ(k) ≜

∑k
i=1 βi, the averaged update can be expressed as

s̄(k) =
(
(1− βk) s̄(k−1) + βk s̃

(k)
)
/θ(k). (24)

After obtaining the averaged update (24), the following task is
to conduct proper projections toward (20b) and (20c). For these
constraints, we can adjust the magnitudes of vector elements to
project to the corresponding feasibility set. Hence, the solution
to the k-th sub-problem can be written as

y(k)=

[(√
γ0N

∥s̄(k)⊙u∥2 (̄s
(k)⊙ u)

)T

,
(
ej arg(̄s

(k)⊙ũ)
)T

]T
. (25)

The update procedures (21)–(25) stop when the iteration
number k approaches K, which leads to the final solution to
(8) given as y(K). Finally, the detailed algorithm for tackling
(8) is summarized in Algorithm 1, with its convergence rate
accelerated by the squared iterative method (SQUAREM) [14].
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IV. SIMULATION RESULTS

We evaluate the performance of the proposed algorithm,
including its convergence speed under different distributions
of ISRJ forwarding times, correlation properties in the single
jamming scenario, range profile in the multi-jamming scenario,
and the robustness to variations in ISRJ forwarding times. Addi-
tionally, we compare our method with the anti-ISRJ algorithms
in [7] (namely ‘JDA-ADMM’), [8] (namely ‘DCADPM’), and
[10] (namely ‘MIAJS-MM’). Throughout all simulations, we
generate sequences with random phases as initialization, and
the same initialization is used for fair comparison.

Example 1: Evaluation on convergence speed. We evaluate
the convergence speed of the proposed algorithm in terms of
normalized objective values versus the number of iterations.
To investigate the impact of different probability density
functions (PDFs) on the convergence speed, we test several
distributions for sampling ISRJ forwarding times within a
specified range, including Uniform, Gaussian, Laplace, and
Poisson distributions. Other parameters are: N = 64, K = 200,
ϵ = 0.5, δ = 0.5, λ = N , and γ0 = 100.2. It can be seen from
Fig.1 that the proposed algorithm converges to approximately
the same value after several iterations for all tested distributions.
The results indicate that the proposed algorithm is robust to
arbitrary distributions of ISRJ forwarding times.

Example 2: Evaluation on correlation properties. We com-
pare the normalized values of ISL, JIL, JPL, and SINR for
all tested algorithms, where the JPL metric represents the
peak level of the jamming correlation function [10]. Code
lengths selected from the set {32, 64, 128} are evaluated, with
the preset ISRJ forwarding times set to m = 20. The other
parameters are the same as used in the previous example. It
can be seen from Table I that our proposed algorithm achieves
the lowest ISL, JIL, and JPL values, and the highest SINR
value across all code lengths. These results demonstrate that the
proposed algorithm outperforms all other algorithms in terms
of correlation properties and target detection performance.

Example 3: Evaluation on ISRJ suppression. We compare
the normalized range profile in the multi-jamming scenario for
all tested algorithms. The ISRJ forwarding times are chosen as
m ∈ {10, 15, 20}, and the location of the real target is set to
3000 m. Other parameters are: N = 128, ϵ = 0.1, JSR = 15
dB, SNR = 0 dB. It can be seen from Fig.2 that the target
cannot be identified using MIAJS-MM, while the jamming peak
of the range profile obtained by our algorithm is about 5 dB and
8 dB lower than both the jamming peak of DCADPM and the
amplitude of the real target, respectively. The results indicate
that our method can achieve better anti-ISRJ performance in
the multi-jamming scenario, facilitating accurate extraction of
real targets at the range bins of interest.

Example 4: Evaluation on parameter sensitivity. We
evaluate the parameter sensitivity of all algorithms to
ISRJ forwarding times. The preset forwarding times for
JDA-ADMM and MIAJS-MM are set to m = 35, and
the actual ISRJ forwarding times chosen from the set
{10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60} are tested. It can be

seen from Table II that the JIL values obtained by JDA-ADMM
and MIAJS-MM vary with ISRJ forwarding times, with the
maximum and minimum values differing by approximately
12 dB and 10 dB, respectively. In contrast, the JIL values
obtained by our algorithm fluctuate within a range of no more
than 3 dB. The results indicate that when there is a deviation
in forwarding times, the anti-ISRJ performance of MIAJS-MM
and JDA-ADMM significantly decreases, while our algorithm
can maintain the robustness to varying ISRJ forwarding times.

V. CONCLUSION

We have proposed an algorithm for jointly designing the
unimodular waveform and the mismatched filter with excellent
ISRJ suppression capability and robustness to forwarding times.
Specifically, we have formulated a non-convex problem with
constraints on SNRL and mainlobe peak level, and have
reformulated its objective into an expected form with respect
to forwarding times. To solve it, we have decomposed the
expectation-based problem into a set of sub-problems. Then,
we have reformulated each sub-problem into a quadratic form,
chosen a proper majorant for each distinct objective, and
finally derived a closed-form solution via the SMM technique.
Simulation results verify the effectiveness of our design.
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