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Abstract—In this paper, we study the problem of MIMO wave-
form design for target estimation by maximizing the conditional
mutual information between an extended target and the received
signals. Existing methods solved this problem through a two-stage
process, which is suboptimal and limited in handling practical
waveform constraints. To address these issues, we formulate the
problem as a nonconvex one and solve it directly through a one-
stage numerical approach. Our proposed algorithm leverages the
minorization-maximization (MM) method, enabling flexible and
efficient handling of diverse waveform constraints. Notably, the
MM algorithm is single-loop, where each iteration offers a closed-
form solution. Furthermore, we reveal that the derived MM
algorithm can be interpreted from the gradient projection per-
spective. Numerical experiments demonstrate that the proposed
algorithm outperforms existing methods under various waveform
constraints.

Index Terms—Mutual information, multiple-input multiple-
output (MIMO) radar, waveform design, target estimation,
minorization-maximization.

I. INTRODUCTION

Target estimation is of immense value among various radar
applications, such as air-traffic control [1] and air defense
[2]. The target impulse response (TIR) provides a convenient
representation to characterizing the target profile [3], [4]. Con-
sequently, the key to effective target estimation is extracting
TIR information from radar echoes. To enhance extraction
performance, our goal is to maximize the TIR information
in the echoes by leveraging the adaptability of waveform
design. Therefore, waveform design plays a critical role in
target estimation.

Using information theory in waveform design has a rich
history with extensive research exploring this area. In the early
1950s, Woodward and Davis [5] were among the pioneers who
applied information theory to radar receiver design. Follow-
ing this, Bell introduced the idea of maximizing conditional
mutual information (MI) between the TIR and the echo to
improve target parameter estimation capabilities [3]. This
approach was further developed for multiple-input multiple-
output (MIMO) radar under power constraints, introducing the
well-known water-filling solution [6]. The problem was for-
mulated as a convex optimization in [6], involving a Toeplitz
and Kronecker product constraint on the waveform matrix.

The experiments of this work were supported by the core facility Platform
of Computer Science and Communication, SIST, ShanghaiTech University.

A two-stage process was utilized: first, a waveform matrix
was derived using the water-filling solution to meet power
constraints, followed by an alternating optimization algorithm
to enforce the Kronecker product structure [7]. However,
while effective, this approach was deemed suboptimal due
to limitations in efficiently considering the Toeplitz product
structure and practical waveform constraints. Subsequently, in
[8], the authors expanded their research to a robust design
by addressing the uncertainty of target power spectral density.
This information theory-based design approach has since been
extensively explored in various studies. For instance, the
colored noise was considered in [9]. A two-stage approach
for distributed MIMO radar was proposed in [10], using
MI for waveform design and echo selection. Furthermore,
joint radar and communication systems were successfully
designed using MI-based radar waveforms [11]. More recently,
a minorization-maximization (MM) method was suggested in
[12] for single-input and single-input single-output (SISO)
radar waveform design, involving a double-loop process for
subproblem resolution. Apart from the research above focusing
on time domain waveform design, there is another line of work
that explores waveform design through MI maximization in the
frequency domain [13]–[15]. However, this aspect is beyond
the scope of the current discussion.

In this paper, we revisit the problem of maximizing mutual
information for MIMO waveform design. We formulate a
nonconvex problem and introduce an efficient algorithm based
on the MM framework [16], which efficiently exploits the
problem structure. Our method differs from the approaches
in [6] and [17] by being a single-loop algorithm that directly
designs waveforms, with each iteration providing a closed-
form solution. Moreover, our algorithm is adaptable to accom-
modate different practical waveform constraints. Additionally,
we demonstrate that the proposed MM algorithm can be
interpreted from a gradient projection perspective. Numerical
experiments demonstrate that the proposed algorithm outper-
forms existing methods under various waveform constraints.

II. SYSTEM MODEL

We consider a MIMO radar system with M transmit anten-
nas and N receive antennas. The response of the extended
target from the m-th transmit antenna to the n-th receive
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Hn,m =


hn,m(t) hn,m(t− 1) · · · hn,m(t− Lt + 1)

hn,m(t+ 1) hn,m(t) · · · hn,m(t− Lt + 2)
...

...
. . .

...
hn,m(t+ Lr − 1) hn,m(t+ Lr − 2) · · · hn,m(t+ Lr − Lt)

 ∈ CLr×Lt (1)

antenna is modeled as a finite impulse response linear system
in baseband with length L, i.e., hn,m(t), t = 0, . . . , L− 1.

Define xm(t) as the transmit waveform from the m-th
transmit element at time t and en(t) to be the additive complex
Gaussian noise with mean zero and variance σ2 received at the
n-th receive element at time t. Then, the received signal of the
n-th receive element at time t is given by

yn(t) =

M∑
m=1

L−1∑
τ=0

hn,m(t− τ)xm(τ) + en(t), (2)

for n = 1, . . . , N . Let Lt be the duration of the transmitted
signals and Lr be the received signal length (we assume
Lt ≫ L). Denote xm = [xm(0), . . . , xm(Lt − 1)]T ∈ CLt ,
yn = [yn(t), . . . , yn(t + Lr − 1)]T ∈ CLr , and en =
[en(t), . . . , en(t+ Lr − 1)]T ∈ CLr . Based on (2), we have

yn =

M∑
m=1

Hn,mxm + en, (3)

for n = 1, . . . , N , where Hn,m is defined in (1) with
hn,m(t) = 0 for t < 0 or t > M − 1. We further define
x = [xT

1 , · · · ,xT
M ]T, y = [yT

1 , . . . ,y
T
N ]T, e = [eT1 , . . . , e

T
N ]T,

and H = [HT
1 , . . . ,H

T
N ]T with Hn = [Hn,1, . . . ,Hn,M ], we

finally obtain the following compact model

y = Hx+ e.

where H can be calculated by h = [h1,1(0), . . . , hN,M (L −
1)]⊤, which is assumed be a Gaussian random vector with zero
mean and covariance Σh. Next, we present mutual information
for waveform design.

III. PROBLEM FORMULATION

For given waveform x, the mutual information between
receive signal y and impulse response H is given by [18]

I(y;H) = H(y)−H(y | H) = H(y)−H(e),

where H(y) = −
∫
log p(y)p(y) dy is the differential entropy

of y, p(y) is the probability density function of y, and H(e)
is the differential entropy of e. The MI I(y;H) measures the
information about H provided by the received signal y [19].

Given the knowledge of x, the received signal y obeys
the Gaussian random process with mean zero and covariance
matrix (I⊗ x)HΣ(I⊗ x) + σ2I, where

Σ =


Σ1,1 Σ1,2 . . . Σ1,LrN

Σ2,1 Σ2,2 . . . Σ2,LrN

...
...

. . .
...

ΣLrN,1 ΣLrN,2 . . . ΣLrN,LrN

 , (4)

with Σi,j ∈ CLtM×LtM being the covariance matrix of the
i-th and the j-th rows of H. Then, the MI is computed as
follows:

I(y;H) = log det

(
I+

1

σ2
(I⊗ x)HΣ(I⊗ x)

)
. (5)

Hence, the MI maximization problem is

maximize
x∈C

log det

(
I+

1

σ2
(I⊗ x)

H
Σ (I⊗ x)

)
, (6)

where C generally denotes the waveform constraints. In prac-
tice, we can use C to constrain the power of the transmitting
waveforms. In this case, we define the power constraint:

C = {x | ∥x∥22 ≤ P0}.

The power constraints can be specifically considered for each
antenna, in which case we define the per-antenna power
constraint [20], [21]

C =
{
x | ∥xm∥22 ≤ P0/M,m = 1, . . . ,M

}
.

Besides, for each antenna, we consider the peak-to-average
ratio (PAR) constraint [22], [23] defined as

C =

{
x | maxt |xm(t)|2

∥xm∥22/Lt
≤ ρ, ∥xm∥22 ≤ P0/M

}
,

where ρ ∈ [1, Lt].
Furthermore, in some cases, we may require the designed

waveforms to be similar to one that has attained good proper-
ties, which leads to the similarity constraint [24], [25]:

C =
{
x | ∥x− xref∥∞ ≤ ϵ

}
.

where xref is a reference waveform and ϵ denotes the similarity
level. A more restrictive waveform constraint is the constant
modulus constraint [26]:

C = {x | |xm(t)| = c} ,

which requires the waveforms to have the same amplitudes.
In practice, the phase shifter only operators on finite phases
[27], [28], and hence the constant modulus with phase alphabet
constraint is commonly considered

C =
{
x | xm(t) = cej

2πk
K , k = 0, . . . ,K − 1

}
,

where K is the total number of the alphabet.

IV. PROPOSED ALGORITHM

A. Minorization-Maximization

We briefly introduce the minorization-maximization (MM)
algorithmic framework [16], [29]. For a general optimization
problem, minimization of f(x) subject to the constraint set
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tr
(
A
(
I+XHBX

)−1
)
≤ tr

(
XHBX

(
I+XHBX

)−1

A
(
I+XHBX

)−1

XHBX

)
− 2ℜ

(
tr

(
A
(
I+XHBX

)−1

XHBX

))
+ tr (A) + tr

((
I+XHBX

)−1

A
(
I+XHBX

)−1

XHBX

) (8)

C, an MM algorithm iteratively solves a sequence of sub-
problems with a surrogate function over C. The surrogate
function, denoted as f(x,x(k)), of f(x) at the iterate x(k),
for k = 0, 1, . . ., satisfies

f(x(k),x(k)) = f(x(k)), ∀x(k) ∈ C,
f(x,x(k)) ≤ f(x), ∀x,x(k) ∈ C.

Thus, at the k-th iteration, the update rule is

x(k+1) ∈ arg maxx∈C f(x,x
(k)).

It can be verified that within the MM scheme, the objective
function value is monotonically non-increasing over iterations,
i.e., f(x(k+1)) ≥ f(x(k+1),x(k)) ≥ f(x(k),x(k)) = f(x(k)).

B. Algorithm Derivation

To deploy the MM framework, the key point is to find the
lower bound of the objective function in problem (6) such that
the subproblems are easy to solve.

Lemma 1. For a positive definite variable X, at iterate X, it
follows that1

log det (X) ≥ log det(X) + tr
(
X−1(X−X)

)
,

where the equality is attained at X = X.

For notational simplicity, we define X = ILrN ⊗ x ∈
CLrNLtM×LrN . Applying Lemma 1 to the objective of prob-
lem (6) yields

log det

(
I+

1

σ2
XHΣX

)
≥ log det

(
I+

1

σ2
XHΣX

)
+ LrN − tr

((
I+

1

σ2
XHΣX

)(
I+

1

σ2
XHΣX

)−1
)
.

(7)
We then apply a further minorization step based on the
following lemma.

Lemma 2. Given a positive definite A and a positive semi-
definite B, we have (8), where the equality is attained at X =
X.

Denote A = I + 1
σ2X

HΣX and B = 1
σ2Σ. Based on

Lemma 2, a further minorization step is applied to the third
term in the RHS of the inequality (7), leading to the problem:

maximize
x∈C

2ℜ(wHx)− xHMx, (9)

where w ∈ CNtM and M ∈ CNtM×NtM are defined in
the following way. Define V = BX

(
I+XHBX

)−1

A,

1Throughout this paper, underlined variables denote those whose values are
given as constants.

and U = BX
(
I+XHBX

)−1

A
(
I+XHBX

)−1

XHB.
We have w = v1 + . . . + vLrN where vi ∈ CLtM , for
i = 1, . . . , LrN , is defined as a block vector taking its rows
from (i− 1)LtM + 1 to iLtM in the ith column of V, and

M = U1,1 + . . .+ULrN,LrN

where Ui,i ∈ CLtM×LtM , for i = 1, . . . , LrN , is a block
matrix of U defined by its rows from (i − 1)LtM + 1 to
iLtM and columns from (i− 1)LtM +1 to iLtM . We apply
a further minorization based on the following lemma to evoke
an easy solution.

Lemma 3. For any Hermitian matrix M and λ ≥ λmax(M),
at iterate x, we have

xHMx ≤ λxHx+ 2ℜ
(
xH(M− λI)x

)
+ xH(λI−M)x,

where the equality is attained at x = x.

Based on Lemma 3, a minorized problem is given by

maximize
x∈C

2ℜ(zHx)− λxHx, (10)

where z = w − (M− λI)x. Solutions to problem (10)
for different waveform constraints are summarized in the
following lemma.

Lemma 4. When C refers to the power constraint,

x⋆ = min
{
λ−1,

√
P0/∥z∥2

}
z.

When C refers to PAR constraint, the problem (10) has a
closed-form solution by analyzing the KKT conditions [30].
When C refers to similarity constraint,

xm(t)⋆ = xref
m (t) + min

{
1, ϵ/

∣∣zrefm (t)
∣∣} zrefm (t),

where zrefm (t) = λ−1z(t) − xref
m (t), and t = 0, . . . , Lt − 1.

When C refers to constant modulus constraint,

x⋆ = c · ej arg(z).

When C refers to constant modulus with phase alphabet
constraint,

x⋆ = c · ej 2π
K k⋆

,

where k⋆ = round
(
K
2π arg(z)

)
, and the function round(x)

denotes the element-wise rounding operation.

Based on the MM method, to solve the original problem
(6), a series of subproblems are solved with a closed-form
solution at each iteration. We summarize the above algorithm
in Algorithm 1.
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Algorithm 1 MM Algorithm for Solving Problem (6)

Input: Covariance matrix Σ,
1: Initialize k ← 0, x(0).
2: while not converge do
3: Compute V,U,w,M.
4: Compute x(k+1) by Lemma 4.
5: k ← k + 1.
6: end while

Output: x(k)
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Fig. 1: Convergence behavior with power constraint and the
corresponding sample mean square error (averaged over 1000
Monte Carlo simulations).

C. A Gradient Projection Perspective on the MM Algorithm

Problem (10) to be solved in each iteration of MM can be
equivalently written as

minimize
x∈C

∥∥x− (x− λ−1 (Mx−w)
)∥∥2

2
,

which is the orthogonal projection of x−λ−1 (Mx−w) onto
the constraint set C. At the k-th iteration, the update of x(k+1)

is given by

x(k+1) = ΠC

(
x(k) + λ−1

(
w −Mx(k)

))
,

where ΠC(x) = argmins∈C ∥x−s∥2. Therefore, the proposed
MM method can be understood as a gradient projection
method for problem (6) with an adaptive step size λ−1 and
the ascent direction w −Mx(k).

V. NUMERICAL EXPERIMENTS

We consider an MIMO radar system comprising M = 4
transmit antennas and N = 4 receive antennas. The transmit-
ted and received signal lengths are Lt = 20 and Lr = 20,
respectively. The impulse response length is L = 5. The co-
variance matrix of the impulse response is randomly generated
from Σh = UDUH, where U is a unitary matrix and D is
a diagonal matrix with Dii ∼ U(0, 1) for i = 1, . . . , LtM .
The noise is assumed to obey CN (0, 1) with σ2 = 1. We
compare the performance of the proposed MM algorithm and
WF+AltProj algorithm [7] for the MI maximization problem.

In Fig. 1(a), we compare the convergence behavior with
the power constraint. Fig. 1(a) indicates that the proposed
MM algorithm achieves better MI than the AltProj under total
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Fig. 2: Comparison of the convergence behavior of the pro-
posed MM method and the WF+AltProj method under various
waveform constraints (averaged over 1000 Monte Carlo sim-
ulations).

power constraint with P0 = 10 and P0 = 20. In Fig. 1(b) we
compare the algorithm performance in terms of sample mean
square error (SMSE) defined as

SMSE =
1

NsNML

Ns∑
i=1

N∑
n=1

M∑
m=1

L−1∑
t=0

∣∣∣h(i)
n,m(t)− ĥ(i)

n,m(t)
∣∣∣2 ,

where h
(i)
n,m(t), for n = 1, . . . , N , m = 1, . . . ,M , i =

1, . . . , Ns is the target impulse response samples generated by
the complex Gaussian distribution, with zero mean and covari-
ance matrix Σh. ĥ(i)

n,m(t) is estimated by the Bayes estimator
[6] with given waveform x, received signal y, and covariance
Σh. The SNR = 10 log10

(
P0/σ

2
)

is set between −5 dB and
20 dB. Fig. 1(b) indicates that the waveform optimized using
MI as the optimization criterion has a lower SMSE compared
to the random waveform, and the proposed MM algorithm
achieves a lower SMSE compared to WF+AlProj. This is
because MM takes into account the known Toeplitz structure
and Kronecker product.

Fig. 2 shows the convergence performance of the proposed
MM algorithm and WF+AltProj under similarity constraint
(the reference waveform xref is generated by a random vec-
tor with total power P0), PAR constraint, constant modulus
constraint (c is set to

√
P0/(MLt)), and phase alphabet

constraint, respectively. In this case, we can see that the MM
converges faster and achieves higher MI than WF+AltProj.

VI. CONCLUSION

In this paper, we have investigated the problem of wave-
form design by maximizing the mutual information met-
ric for MIMO radar systems, while having accounted for

2330



various practical waveform constraints. We have formulated
the waveform design challenge as a nonconvex optimization
problem and have developed an MM-based iterative algo-
rithm to address it. Through numerical experiments, we have
demonstrated that the proposed algorithm outperforms existing
approaches.
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