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Abstract—Integrated Sensing and Communication (ISAC) sys-
tems combine radar sensing and communication to improve
spectral and hardware efficiency in 6G networks. The emerging
Orthogonal Time Frequency Space (OTFS) modulation is well-
suited for ISAC due to its robustness in the Delay-Doppler (DD)
domain compared to traditional Orthogonal Frequency Division
Multiplexing (OFDM). Despite its advantages, OTFS exhibits
high sidelobe levels that affect sensing performance. To further
enhance the radar sensing aspect of an OTFS-based ISAC system,
we design a phase matrix to optimize the OTFS waveform. Our
goal is to reduce the sidelobe levels of the 2D Ambiguity Function
(AF) for the phase-tailored OTFS waveform. Specifically, we
formulate an optimization problem to minimize the AF Peak
Sidelobe Level (PSL) by introducing an additional degree of
freedom for each communication symbol, thereby improving
sensing performance while preserving similar communication
efficiency. We solve the related non-convex NP-hard optimization
problem and propose an Alternative Optimization (AO)-based al-
gorithm. By decomposing the problem into two subproblems, one
convex and the other is solved using Projected Gradient Descent
(PGD), we iteratively update the variables until convergence.
This approach effectively minimizes the PSL, improving target
resolution and reducing interference. Simulation results show that
the proposed method efficiently reduces the sidelobe levels and
improves the AF, leading to increased sensing performance.

Index Terms—OTFS, OFDM, Automotive Radar, Ambiguity
Function, PMCW, FMCW.

I. INTRODUCTION

Sixth-generation (6G) wireless communication builds on the
advancements of 5G but introduces new technologies such
as Integrated Sensing And Communication (ISAC), enabling
real-time environmental awareness by merging radar and com-
munication functions into a unified framework [1]–[3]. This
integration is crucial for applications like autonomous driving,
smart cities, and advanced vehicular networks, where efficient
spectrum utilization and high-resolution sensing are essential.

A key enabler of ISAC is waveform design for Joint Radar
and Communication (JRC), where emerging Orthogonal Time
Frequency Space (OTFS) modulation, [4], [5], has gained

∗The work of Nazila Karimian, M.Sabrina Greco and Fulvio Gini was
supported by the European Union under the Italian National Recovery and
Resilience Plan (PNRR) of NextGenerationEU partnership on ”Telecom-
munications of the Future” (PE00000001 - program ”RESTART”), CUP
E63C22002040007 - D.D. n.1549 of 11/10/2022. The work of Mohammad
Alaee-Kerharoodi and Bhavani Shankar M. R. was supported by FNR CORE
INTER project SENCOM: C20/IS/14799710/SENCOM.

attention for its superior performance in dynamic environ-
ments. Unlike conventional Orthogonal Frequency Division
Multiplexing (OFDM), which operates in the Time-Frequency
(TF) domain, OTFS maps data onto the Delay-Doppler (DD)
domain, making it more resilient to high-mobility challenges
such as Doppler shifts and multipath fading [6]. This property
enhances radar sensing by enabling accurate target range and
velocity estimation, crucial for real-time tracking in vehicular
networks and smart infrastructure. Additionally, OTFS-based
radar systems offer improved spectral efficiency, reduced Peak-
to-average Power Ratio (PAPR), and greater resilience to
channel variations compared to OFDM, positioning it as a
strong candidate for next-generation ISAC applications in
high-speed wireless environments.

While OTFS has been studied for its effectiveness in com-
munication systems [4], [7]–[11], it has also been explored for
radar sensing, contributing to target detection and parameter
estimation [12]–[19]. Its inherent DD representation aligns
with radar signal processing techniques, allowing for range
and velocity estimation comparable to or, in some cases, better
than OFDM. Although OTFS does not directly replicate clas-
sical radar waveforms such as Frequency Modulated Contin-
uous Wave (FMCW) and Phase Modulated Continuous Wave
(PMCW), it offers a flexible alternative for radar applications
in ISAC systems. Studies show that OTFS-based radar can de-
tect and track multiple targets in dense environments, making
it a viable option for automotive and defense applications.

On the other hand, we showed in [20] that OTFS has high
sidelobe levels, potentially masking weak targets or causing
interference. To address this, we designed a phase matrix
using the Coordinate Descent (CD) framework to minimize the
Integrated Side-lobe Level (ISL) of the Ambiguity Function
(AF) range cut, the focus was primarily on reducing sidelobes
in the range dimension using discrete phase values. However,
for improved radar performance, it is essential to minimize
sidelobes in both the range and Doppler dimensions.

The AF plays a key role in balancing range and Doppler
resolution in sensing applications. The Peak Side-lobe Level
(PSL) of the AF directly impacts radar resolution, with lower
sidelobes reducing interference and enhancing reliability [21].
In this paper, we extend our previous work by designing a
phase matrix to reduce 2D AF sidelobes across both range
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and Doppler dimensions. We formulate an optimization prob-
lem with continuous phase constraint (unimodular waveform),
allowing greater control over the entire AF plane, and propose
a solution to the associated non-convex problem.

The rest of this paper is organized as follows. Section II
introduces OTFS modulation and its AF. Section III presents
the problem formulation and solution for designing the phase
matrix to minimize the AF PSL of the OTFS waveform.
Numerical results for the proposed algorithm are provided in
Section IV, and conclusions are drawn in Section V 1.

II. OTFS SIGNAL MODEL

In this section, we present the OTFS modulator and exclude
the equations related to the receiver and channel, as this paper
focuses on designing the OTFS transmit waveform.

A. OTFS modulator

Consider a two-dimensional OTFS frame XDD ∈ CM×N

where each element xDD[k, l], , k ∈ {0, 1, ...,M − 1}, l ∈
{0, 1, ..., N − 1} represents modulated communication sym-
bols, such as M-array QAM, in the DD domain. This frame
is mapped to the TF domain using the Inverse Symplectic
Finite Fourier Transform (ISFFT), a preprocessing step for
OFDM modulation [12]. The TF representation, denoted as
XTF ∈ CN×M , is obtained by sampling the time and fre-
quency axes at intervals ∆T and ∆f = 1/∆T , respectively.
Consequently, the frame duration is Tf = N∆T , and the total
bandwidth is B = M∆f = 1/T . Applying ISFFT transforms
the OTFS frame as,

xTF[n,m] =
1√
NM

M−1∑
k=0

N−1∑
l=0

xDD[k, l]e
j2π(nl

N
−mk

M ) (1)

where xTF[n,m], n ∈ {0, 1, ..., N − 1},m ∈ {0, 1, ...,M − 1}
are the TF samples.This operation corresponds to applying
the Discrete Fourier Transform (DFT) along one dimension
(Doppler) and the Inverse Discrete Fourier Transform (IDFT)
along the other (delay), yielding a matrix form,

XTF = (FMXDDF
H
N )T (2)

where FM ∈ CM×M and FH
N ∈ CN×N are the unitary M-

point DFT and the N-point IDFT matrices, respectively, i.e.
FM [l,m] = 1√

M
e−j2πl m

M . We further use this matrix format
to solve the proposed optimization problem. To generate
the continuous-time transmit signal, the Heisenberg transform
with gtx(t) as the pulse-shaping function, is applied at each
∆T symbol duration, n ∈ {0, 1, ..., N − 1},

sn(t) =
1√
M

M−1∑
m=0

xTF[n,m]ej2πm∆ftgtx(t), 0 ≤ t ≤ ∆T (3)

1Notation: CN denotes the N-dimensional set of complex numbers. Bold
uppercase X and lowercase x represent matrices and vectors, respectively.
X∗, XT , XH , |X|, max(X), min(X), tr(X), and vec(X) represent the con-
jugate, transpose, Hermitian transpose, absolute value, maximum, minimum,
trace, and vectorization of X, respectively. diag(x) is a diagonal matrices
whose diagonal entries are equal to the elements of x. Functions ln(.), rect(.),
and sinc(.) denote logarithmic, rectangular, and sinusoidal functions. ∇X is
the gradient operation w.r.t. the variable X . ℜ and ℑ are the real and imaginary
parts of a complex number, respectively.

Considering a rectangular pulse-shaping, the baseband trans-
mit signal can be written as s(t) = 1√

N

∑N−1
n=0 sn(t− n∆T )

[15]. Thus, we have,

s(t) =
1√
NM

N−1∑
n=0

M−1∑
m=0

xTF[n,m]ej2πm∆f(t−n∆T )rect(t− n∆T ).

(4)

B. Ambiguity Function of OTFS Waveform

From a radar perspective, the AF is a crucial performance
metric to consider when designing waveforms. We derive the
AF for the OTFS waveform, which can be computed for
different delay shifts τ and Doppler frequencies fd. For a
general transmit signal s(t), it is given by,

χ(τ, fd) =

∫ ∞

−∞
s(t)s∗(t− τ)ej2πfdt dt, (5)

Substituting s(t) of Eq. (4) into Eq. (5), the AF of OTFS
can be obtained by Eq. (7), shown at the top of the next page,
where Tdiff and Tavg can be calculated as follows [20]–[22],

Tdiff[n, n
′, T ] =

{
Tmax − Tmin,

τ
T
− 1 < n− n′ < τ

T
+ 1

0, other,

Tavg[n, n
′, T ] =

{
Tmin+Tmax

2
, τ

T
− 1 < n− n′ < τ

T
+ 1

0, other,

Tmin[n, n
′, T ] = max{nT, n′T + τ},

Tmax[n, n
′, T ] = min{(n+ 1)T, (n′ + 1)T + τ}.

(6)

The ideal AF should have a single peak at the origin of the
range-velocity plane, with zero values elsewhere. However,
achieving a perfect AF is impossible. Radar waveform design
aims to approximate this ideal by concentrating energy in the
main lobe while minimizing sidelobes.The PSL of the AF
plays a crucial role in determining radar resolution. In the next
section, we formulate an optimization problem to enhance the
OTFS waveform and improve its sensing capability through
PSL minimization of the OTFS AF.

III. OTFS WAVEFORM OPTIMIZATION

A. Problem Formulation

To mitigate high sidelobes, we propose a phase-perturbed
OTFS-based waveform design. This approach constructs a
phase matrix, i.e., Θ, modifying the OTFS frame as:

X′
DD = XDD ⊙ ejΘ, (8)

in order to improve sidelobe levels. Specifically, Θ is designed
to optimize the AF of the modified OTFS frame, χ′(τi, dj). By
applying phase perturbations to each communication symbol
in the DD domain, AF sidelobes are effectively suppressed,
enhancing radar performance [21].

In (9), the optimization objective controls sidelobe levels
across different range and Doppler lags, with weighting factors
wij adjusting the emphasis on suppression in specific AF
regions. To reduce computational complexity, the PSL can be
optimized primarily near the mainlobe by setting wij = 1 if
(τi, fdj) ∈ A, and wij = 0 otherwise, where A defines the
DD regions of interest.
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χ(τ, fd) =

M−1∑
m=0

M−1∑
m′=0

N−1∑
n=0

N−1∑
n′=0

xTF[n,m]x∗
TF[n

′,m′]ej2πm′∆fτ

∫ Tmax

Tmin

ej2π((m−m′)∆f+fd)tdt

=

M−1∑
m=0

M−1∑
m′=0

N−1∑
n=0

N−1∑
n′=0

xTF[n,m]x∗
TF[n

′,m′] ej2πm′∆fτTdiff[n, n
′]sinc

(
π((m−m′)∆f + fd)Tdiff[n, n

′]
)
ej2π((m−m′)∆f+fd)Tavg[n,n′]︸ ︷︷ ︸

Ãτ,fd
[n,m, n′,m′]

(7)


min
Θ

f(Θ) = max
(τi,fdj

)∈A
(τi,fdj

)̸=(0,0)

{
wij

∣∣∣χ′(τi, fdj )
∣∣∣}

s.t. |Θ[k, l]| ⩽ θmax,
∀k ∈ {0, 1, ...,M − 1},
l ∈ {0, 1, ..., N − 1}.

(9)

Remark 1: If the phase perturbation applied to each DD
symbol remains below the upper bound θmax, the Signal to
Noise Ratio (SNR) of the communication decreases by a
factor of sin2

(
π
M − θmax

)
/sin2

(
π
M

)
, where M represents the

number of discrete phase levels in the modulation scheme,
such as the number of symbols in an M -ary QAM scheme
[21], [23]. Thus, θmax controls the trade-off between radar
and communication functionalities. A small θmax significantly
enhances radar sensing while causing only a negligible degra-
dation in communication performance.

Remark 2: The matrix Θ is not available at the communi-
cation receiver and is treated as phase noise. Thus, no mod-
ifications to existing communication processing schemes are
required, allowing seamless integration with current systems.

Problem (9) is a min-max, nonlinear, non-convex and NP-
hard optimization problem. We apply the epigraph reformula-
tion and propose an Alternative Optimization (AO)-based al-
gorithm. By decomposing the problem into two subproblems,
we iteratively update the variables until convergence.

B. Solution to the optimization problem

To solve the problem (9), following a similar approach to
that we proposed in [24], we introduce an auxiliary variable
t, which constrains the objective function and transforms
the min-max problem into a standard minimization problem.
Therefore, by setting wij = 1 for all (τi, fdj) ∈ A, (9) can be
reformulated as,

min
Θ

t

s.t.

∣∣∣χ′(τi, fdj )
∣∣∣ ≤ t, ∀(τi, fdj ) ∈ A, (τi, fdj ) ̸= (0, 0)

|Θ[k, l]| ⩽ θmax,
∀k ∈ {0, 1, ...,M − 1},

l ∈ {0, 1, ..., N − 1}.
(10)

To handle the nonlinear and nonconvex constraint∣∣χ′(τi, fdj )
∣∣ ≤ t, we define a 4D array Ãτ,fd [n,m, n′,m′] ∈

CN×M×N×M , n, n′ ∈ {0, 1, ..., N − 1}, m,m′ ∈
{0, 1, ...,M − 1} in Eq. (7) and reshape it into a 2D matrix
ANM×NM , ∀(τ, fd), that is, A[ñ, m̃] = Ã[n,m, n′,m′] where
ñ = (n− 1)M +m, ñ = (n′ − 1)M +m′. This enables us to
write the AF in (7) in a compact matrix form as,

χ(τi, fdj ) = vec(XTF)
HA(τi, fdj )vec(XTF). (11)

To express Eq. (11) in terms of the DD domain XDD, we use
the vectorized form of the ISFFT (Eq. (2)) and apply the vec-
Kronecker identity. Thus, we can write vec(XTF) = (FM ⊗
F∗

N ) vec(XDD), and reformulate OTFS AF in DD domain as,
χ(τi, fdj ) = vec(XDD)

HH(τi, fdj )vec(XDD), (12)

where for each range-Doppler lag, H ∈ CNM×NM is obtained
by,

H(τi, fdj ) =
(
FH

M ⊗ FT
N

)
A(τi, fdj )

(
FM ⊗ F∗

N

)
∀(τi, fdj )

(13)
To obtain the phase-perturbed OTFS AF χ′(τi, fdj ), we use

Eq. (8). Thus, we have,

χ′(τi, fdj ) = vec(XDD ⊙ ejΘ)HH(τi, fdj )vec(XDD ⊙ ejΘ). (14)

Since H is not positive semi-definite (PSD), and due to
the presence of the absolute value operation in the constraint
|χ′(τi, fdj )| ≤ t, it is non-convex. By using the auxiliary
variable VMN×MN = vec(XDD ⊙ ejΘ) vec(XDD ⊙ ejΘ)H , we
have

∣∣∣χ′(τi, fdj )
∣∣∣ = ∣∣tr(HV)

∣∣ = ∣∣∣∑MN
i=1 (HV)ii

∣∣∣. According to

triangle inequality,
∣∣∣∑MN

i=1 (HV)ii

∣∣∣ ≤ ∑MN
i=1

∣∣(HV)ii
∣∣. Thus, we

have
∣∣∣χ′(τi, fdj )

∣∣∣ ≤ ∑MN
i=1

∣∣(HV)ii
∣∣ . Minimizing the AF upper

bound (
∑MN

i=1

∣∣(HV)ii
∣∣) ensures minimization of the AF itself.

Thus, we can recast the optimization problem as,

min
Θ,V,t

t

s.t.

MN∑
i=1

∣∣∣(H(τi, fdj )V)ii

∣∣∣ ≤ t,
∀(τi, fdj ) ∈ A,
(τi, fdj ) ̸= (0, 0),

|Θ[k, l]| ⩽ θmax,
∀k ∈ {0, 1, ...,M − 1},
l ∈ {0, 1, ..., N − 1}

V = vec(XDD ⊙ ejΘ) vec(XDD ⊙ ejΘ)H .
(15)

The problem remains nonconvex due to the equality con-
straint in V and its nonlinear relation with Θ. To address this,
we first define the auxiliary variable u = vec(XDD ⊙ ejΘ).
Thus, V = uuH . We relax the problem w.r.t. the variable
V and change the problem into a bi-objective optimization
problem as follows, where η is a regularization parameter,

min
Θ,V,t

t+ η||V − uuH ||F

s.t.

MN∑
i=1

∣∣∣(H(τi, fdj )V)ii

∣∣∣ ≤ t,
∀(τi, fdj ) ∈ A,
(τi, fdj ) ̸= (0, 0),

|Θ[k, l]| ⩽ θmax,
∀k ∈ {0, 1, ...,M − 1},

l ∈ {0, 1, ..., N − 1}
u = vec(XDD ⊙ ejΘ).

(16)
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In this step, we decompose the problem into two sub-
problems and propose an AO-based approach that iteratively
converges to the optimal solution. At each AO iteration, we
first consider Θ fixed, hence u is also fixed, and we solve the
following subproblem (17), which is convex w.r.t. the variables
V and t and can be solved with any convex optimization tool.

min
V,t

g = t+ η||V − uuH ||F

s.t.
MN∑
i=1

∣∣∣(H(τi, fdj )V)ii

∣∣∣ ≤ t,
∀(τi, fdj ) ∈ A,
(τi, fdj ) ̸= (0, 0),

.

(17)
Then, t and V are updated, and by fixing them, we solve

the following subproblem (18) w.r.t. the variable Θ. Since
u is a dependent and non-linear variable in this problem,
we use Projected Gradient Descent (PGD) to solve it which
is an extension of Gradient Descent (GD) incorporating a
projection step to ensure that Θ remains within the feasible
set |Θ[k, l]| ⩽ θmax.

min
Θ

||V − uuH ||F

s.t. |Θ[k, l]| ⩽ θmax,
∀k ∈ {0, 1, ...,M − 1},
l ∈ {0, 1, ..., N − 1}

u = vec(XDD ⊙ ejΘ).

(18)

To compute the gradient ∇Θf(Θ), f(Θ) = ||V − uuH ||F ,
we use the chain rule,

∇Θf(Θ) =
∂f

∂u

∂u

∂vec(Θ)
+

∂f

∂u∗
∂u∗

∂vec(Θ)
.

Since f(Θ) = tr((V − uuH)(V − uuH)H), the derivative of f
w.r.t. u is calculated as ∂f

∂u
= −2ℜ{V}u+ 4uuHu. Therefore,

the gradient is calculated by [25],

∇Θf(Θ) = −4ℑ
(

diag(u)(2∥u∥2IMN −ℜ(V))u
)
, (19)

In the pth iteration of the GD approach, Θ is updated by,

vec(Θ(p)) = PC(vec(Θ(p−1))− α∇Θf(Θ
(p−1))) (20)

where α is the step size and PC(.) is the projection operator
such that PC(Θ) = min(max(Θ, θmin), θmax). We iteratively
update Θ until convergence. Subsequently, the updated Θ and
u are fed into the algorithm as inputs for the next AO iteration
to solve the first subproblem (17) again. The entire procedure
is then iteratively repeated until the convergence criterion is
satisfied. Algorithm 1 summarizes the proposed approach.

IV. NUMERICAL RESULTS

In this section, we present numerical results to evaluate
the performance of the proposed algorithm. Fig. 1 illustrates
the normalized objective functions at each iteration of Algo-
rithm 1 under different settings. The decreasing cost functions
confirm the convergence of the proposed approach.

We assume transmit pulses with a total bandwidth of
B = 200 MHz and a pulse duration of Tf = 320 ns. The
OTFS frame is constructed using a frame size of M = N = 8,
where Quadrature Phase Shift Keying (QPSK) symbols are

Algorithm 1 Proposed AO-based algorithm for OTFS Waveform
Optimization

1: Inputs: XDD, regularization parameter η, step size α,
θmin, θmax, threshold ϵ and initialize Θ(0).

2: Outputs: Optimized phase matrix Θ⋆ and X′⋆
DD.

3: Initialize u(0) = vec(XDD ⊙ ejΘ
(0)

).
4: for q = 0, 1, 2, . . . do (AO iteration)
5: Solve the convex subproblem (17),
6: Update V(q) and t(q),
7: for p = 0, 1, 2, . . . do (solving subproblem (18))
8: Compute the gradient (19)
9: update Θ(p) using the PGD update rule (20)

10: Break if ||Θ(p−1) −Θ(p)||F < ϵ.
11: end for
12: Update Θ(q) = Θ(p),
13: Update u(q) = vec(XDD ⊙ ejΘ

(q)

).
14: Break if |g(q−1) − g(q)| < ϵ.
15: end for
16: Outputs: Θ⋆ = Θ(q) and X′⋆

DD = XDD ⊙ ejΘ
⋆

.
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Fig. 1: Objective values of the proposed algorithm for different frame
sizes.

embedded in each frame. Additionally, we set θmax = 15◦.
The region of interest A for sidelobe level reduction is defined
by wij = 1, ∀(τi, fdj) ∈ A = [−0.2, 0.2]2 (normalized delay
and Doppler frequencies w.r.t. the Tf and B, respectively).
Fig. 2a and Fig. 2b show zero-Doppler and zero-delay cuts of
the AF of initial and phase-perturbed OTFS signals, respec-
tively. From these figures, it can be seen that, in the region
A highlighted in the figures, the designed phase-perturbed
OTFS exhibit lower sidelobe levels in both range and Doppler
direction, leading to improved sensing performance. Since the
algorithm focuses on sidelobe suppression only in A, the side-
lobe levels may be higher outside of this region. The 2D AF
PSL values, PSL = 10log10(max(i,j)̸=(0,0)(|χ(τi, fdj

)|2))),
in the region A, for the initial and designed waveforms are
−16.57dB and −21.8dB respectively. Although the sidelobe
level reduction is lower compared to our previous work in [20],
the algorithm does not focus on a single dimension. Instead, in
this paper, we achieve sidelobe suppression in two dimensions.

V. CONCLUSION

This paper proposes an optimization framework to design
a phase-perturbed OTFS waveform aimed at improving radar

2335



(a)

(b)

Fig. 2: (a) Zero-Doppler and (b) Zero-Delay sections of the OTFS
waveform Ambiguity Functions.

sensing performance by reducing sidelobe levels in the DD
domain. The approach minimizes the AF PSL in two dimen-
sions while maintaining communication efficiency. The opti-
mization problem is non-convex, and an AO-based algorithm
is introduced to solve it iteratively across two subproblems:
one convex and the other solved using the PGD approach.
This ensures the feasibility of the solution while achieving
PSL minimization. Numerical results show that the proposed
algorithm effectively suppresses sidelobe levels in both range
and Doppler dimensions, enhancing radar detection accuracy
and reducing interference.
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