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ABSTRACT
This paper presents a minimum redundancy planar coarray
design for high-resolution MIMO radar imaging. By lever-
aging sparse antenna configurations, the proposed approach
enhances angular resolution while minimizing redundant
spacings in the virtual array. A joint range-Doppler estimator
is developed based on a four-dimensional transmit-receive
signal model, facilitating multi-target localization in azimuth
and elevation. To minimize the spatial sampling require-
ments, a combinatorial formulation is introduced for design-
ing planar MIMO minimum redundancy arrays, ensuring a
continuous coarray structure with fewer physical elements
and exploiting filled coarray locations with FFT-based angle
spectra for markedly enhanced computational efficiency over
adaptive techniques and sparse recovery methods. Numeri-
cal simulations demonstrate that the proposed coarray-based
MIMO radar achieves superior resolution compared to con-
ventional filled arrays while effectively suppressing grating
lobes. This work provides a cost-efficient solution for high-
precision radar imaging applications.

Index Terms— Angle Estimation, Distributed Aper-
ture Radar, High-Resolution Imaging, Sparse Array Design,
MIMO Radar, Minimum Redundancy Coarray, Virtual array.

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) radar has emerged
as a critical technology for high-resolution imaging and tar-
get detection applications due to its large virtual array and
its ability to exploit waveform diversity and spatial process-
ing gains [1–3]. Traditional Uniform Linear Array (ULA),
Uniform Rectangular Array (URA) and Uniform Planar Ar-
ray (UPA) designed for virtual arrays have been extensively
utilized in MIMO radar systems; however, the angular reso-
lution is limited by the virtual array aperture and suffers from
redundancy in spatial sampling [4]. To address these chal-
lenges, sparse linear coarrays have been investigated as an
efficient alternative, leveraging non-uniform element distri-
butions to achieve higher resolution with fewer physical an-
tennas [5–7].

Sparse array architectures such as co-prime arrays, nested
arrays, and Minimum Redundancy Array (MRA) offer in-
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creased degrees of freedom by synthesizing a larger aper-
ture through coarray processing [6, 8]. The difference coar-
ray structure generated by these sparse arrays enables supe-
rior Direction-of-Arrival (DoA) estimation and enhances tar-
get detection capabilities by effectively suppressing grating
lobes while maintaining a continuous spatial sampling struc-
ture. Recent advancements in distributed aperture radars [9–
11] have demonstrated the potential of these architectures in
MIMO radar imaging, achieving better spatial resolution with
reduced redundancy [4, 11].

To address these challenges, this paper proposes a min-
imum redundancy planar coarray design for high-resolution
MIMO radar imaging. The proposed approach leverages pla-
nar sparse array configurations to construct a four-dimensional
transmit-receive matrix, enabling high-precision multi-target
localization in both azimuth and elevation. By formulating
the coarray design as a combinatorial optimization problem,
we develop a continuous coarray structure that minimizes
redundant spacings while maintaining the necessary spatial
sampling diversity. Moreover, the utilization of filled coarray
locations combined with Fast Fourier Transform (FFT)-based
angle spectrum estimation renders the processing consider-
ably more computationally efficient than adaptive techniques
or sparse recovery methods in compressed sensing-based
approaches. This results in improved resolution over con-
ventional filled arrays while effectively suppressing grating
lobes.

2. SIGNAL MODEL

We consider a multichannel Frequency Modulated Continu-
ous Wave (FMCW) radar equipped with a sparse planar array
coarray configuration. The system consists of M transmit el-
ements and N receive elements, located at

pT,m = (0, m̄y,m, m̄z,m)
λ

2
, m = 1, . . . ,M, (1)

pR,n = (0, n̄y,n, n̄z,n)
λ

2
, n = 1, . . . , N. (2)

Here, (m̄y,m, m̄z,m) ∈ M and (n̄y,n, n̄z,n) ∈ N, where M
and N are sets of integer pairs with cardinalities |M| = M
and |N| = N , respectively.

The received radar data from the environment is captured
by each receive antenna, sampled in K fast-time samples and
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LM pulses, forming a three-dimensional tensor, referred to as
the radar data cube, T ∈ CK×LM×N . Applying range win-
dowing followed by a fast-time FFT (for FMCW radars) or a
matched filter (for pulsed radars) leads to the range-slow time-
antenna tensor, Y ∈ CK×LM×N . A joint Doppler processing
and MIMO demodulation approach [12] is then applied to ob-
tain a four-dimensional range-Doppler-transmit-receive ten-
sor, Z ∈ CK×L×M×N . After applying range-Doppler Con-
stant False Alarm Rate (CFAR) detection on the following
range-Doppler map

T =

M∑
m=1

N∑
n=1

|Z[:, :,m, n]|2 (3)

Each detection point in {(Rk, fd,k)}, corresponds to a transmit-
receive antenna matrix, Zk ∈ CM×N . It can contain multiple
targets at different azimuth and elevation angles.

The phase difference for the k-th target at the (m,n)-th
transmitter-receiver pair is given by:

ϕk,m,n = −2π

λ

(
∥pt

k − ptx
m∥+ ∥pt

k − prx
n ∥

)
, (4)

where the target position is parameterized as pt
k = Rkr̂k.

Here, r̂k = [cos θk cosϕk, sin θk cosϕk, sinϕk]
T is the unit

direction vector, with θk and ϕk denoting the azimuth and
elevation angles of the target. Using the far-field approxima-
tion,

∥pt
k − ptx

m∥ ≈ Rk − ptx
m · r̂k, (5)

The phase term can be rewritten as:

ϕk,m,n ≈ 2π

λ

(
ptx
m + prx

n

)
· r̂k − 4π

λ
Rk. (6)

Since the last term is the same for all transmit-receive
pairs, it can be considered as a constant phase offset and re-
moved. The phase used in angle processing is:

φk,m,n =
2π

λ

(
ptx
m + prx

n

)
· r̂k. (7)

2.1. Planar Array

For a traditional filled rectangular MIMO radar, the antenna
element positions are selected as: m̄y,m = mNy, m̄z,m =
mNz; m = 0, . . . ,My − 1, and n̄y,n = n, n̄z,n =
n; n = 0, . . . , Ny − 1, and MyMz = M,NyNz = N. For
this uniform rectangular MIMO radar, the received signal for
a target is:

sky,kz = exp(jπ(sin θk cosϕkky + sinϕkkz)), (8)

where ky and kz denote the indices of the virtual array, and
ky ∈ {m̄y,m + n̄y,n}, kz ∈ {m̄z,m + n̄z,n}.

2.2. Coarray of URA Virtual Array

The corresponding coarray signal set can be expressed as

{sky,kz
s∗k′

y,k
′
z
} = {ejωy(ky−k′

y)ejωz(kz−k′
z)}. (9)

Each signal is associated with a coarray antenna location, and
these locations may repeat. Specifically, the coarray antenna
locations are given by CM,N = {(m̄y,m + n̄y,n − m̄y,m′ −
n̄y,n′ , m̄z,m + n̄z,n − m̄z,m′ − n̄z,n′)}.
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Fig. 1: (a) Transmit, receive, virtual, and coarray antenna
locations. (b) Histogram of the number of coarray pairs,
CM,N, for a traditional filled URA virtual array MIMO radar
(M = 6, N = 9).

The two-dimensional pairs histogram, CM,N, counts how
many times each pair appears in the set CM,N. As illustrated
in Fig. 1 for a Uy × Uz uniform rectangular virtual array (in
this example, 9 × 6), consider a fixed z-spacing Dz (with
Dz = 0, . . . , Uz − 1). In this case, a spacing of one unit
along y occurs (Uz − Dz)(Uy − 1) times, a spacing of two
units occurs (Uz − Dz)(Uy − 2) times, and the maximum
y-spacing of Uy − 1 occurs only (Uz −Dz) times. By elim-
inating these redundant spacings, the effective aperture of the
array can be increased, while all spatial spacing information
is preserved, yielding higher resolution. This idea aligns with
the concept of a Minimum Redundancy Array (MRA), which
requires that the set of coarray locations, CM,N, contains a
continuous sequence of antenna positions.
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2.3. Azimuth Angle Resolution

To improve azimuth resolution, without grating lobes, define
the subset Laz(Ly) = L1:Ly,0 = {(1, 0), (2, 0), . . . , (Ly, 0)},
Laz(Ly) ⊂ CM,N should be satisfied. The corresponding sig-
nal array is given by

zaz(i) =
1

CM,N(i, 0)

∑
CM,N

ky−k′
y=i

kz−k′
z=0

sky,kz
s∗k′

y,k
′
z
, i = 0, 1, . . . , Ly.

The nonadaptive azimuth beampattern is then computed by
taking the discrete Fourier transform (DFT) of the windowed
(e.g., Hamming window) and zero-padded version of zaz:

z̄az = FL′
y

[
wLy ⊙ zaz; 0L′

y−Ly

]
, (10)

where FL′
y

is the DFT matrix, wLy
is a window of length

Ly (extended to length L′
y > Ly via zero-padding), and ⊙

denotes element-wise multiplication.

2.4. Elevation Angle Resolution

Similarly, to enhance elevation resolution, define

Lel(Lz) = L0,1:Lz = {(0, 1), (0, 2), . . . , (0, Lz)} ⊂ CM,N,

with the associated signal array

zel(i) =
1

CM,N(0, i)

∑
CM,N

ky−k′
y=0

kz−k′
z=i

sky,kz s
∗
k′
y,k

′
z
, i = 0, 1, . . . , Lz.

The elevation beampattern is obtained similarly as

z̄el = FL′
z

[
wLz ⊙ zel; 0L′

z−Lz

]
. (11)

2.5. Joint Azimuth-Elevation Resolution

For a filled rectangular coarray that enhances both azimuth
and elevation resolution, the coarray must include every pair
within the rectangular region: Lazel(Ly, Lz) = L1:Ly,0 ∪
L1:Ly,1 ∪ · · · ∪ L1:Ly,Lz ∪ L0,1:Lz ⊂ CM,N. The associated
two-dimensional signal array is defined as

Z(i, j) =
1

CM,N(i, j)

∑
CM,N

ky−k′
y=i

kz−k′
z=j

sky,kz s
∗
k′
y,k

′
z
.

After zero-padding the windowed version WLy,Lz ⊙Z to ob-
tain Zzp, the joint azimuth-elevation beampattern is computed
as

Z̄ = FL′
y
Zzp F

H
L′

z
.

The filled coarray locations and the FFT-based angle spec-
tra make the processing more computationally efficient com-
pared to adaptive techniques [13] or sparse recovery methods
in compressed sensing-based approaches [14].
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Fig. 2: (a) Transmit, receive, virtual, and coarray antenna lo-
cations. (b) Histogram of the number of coarray pairs, CM,N,
for the proposed 2D MRA MIMO radar, Lazel(29, 13), with
M = 6 and N = 9.

3. PLANAR MIMO MINIMUM REDUNDANCY
ARRAY DESIGN

To achieve the desired coarray structure, we define the fol-
lowing optimization problem:

minimize
M,N

M + αN,

subject to Lang(Ly, Lz) ⊂ CM,N,

|M| = M, |N| = N,

(12)

where α represents the transmit-receiver cost ratio, which is
introduced because the cost of transmit and receive chains
may differ due to hardware complexity, power consumption,
or implementation constraints, and

Lang(Ly, Lz) ∈
{
Laz(Ly) ∪ Lel(Lz), Lazel(Ly, Lz)

}
.

This problem is combinatorial in nature and, in general,
is not easy to solve. For smaller values of Ly and Lz , one can
employ an exhaustive search algorithm to find the solution.
In [5], for one-dimensional SIMO MRA arrays (i.e., M = 1,
Lz = 1, and α = 1), a class of linear arrays is presented that
achieves maximum resolution for a given number of elements
Ly by minimizing the number of redundant spacings present
in the array. For example, for Ly = 23 the solution is N =
{(0, 0), (1, 0), (4, 0), (10, 0), (16, 0), (18, 0), (21, 0), (23, 0)}
with N = 8.

In [4], for one-dimensional MIMO MRA arrays (Ly =
63, Lz = 1, and α = 1), a solution is found with M =
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{(0, 0), (1, 0), (3, 0)} and N = {(0, 0), (6, 0), (13, 0),
(40, 0), (60, 0)} with M = 3, N = 5.
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Fig. 3: Azimuth-elevation beampattern for M = 6, N = 9:
(a) Filled virtual array MIMO radar; (b) Filled coarray MIMO
radar.

In the planar array case, inspired by these works, the 1D
restricted and general coarray designs from [5] are employed
to achieve Lazel(Ly, Lz), with transmitters placed along the
y-direction and receivers along the z-direction (or vice versa).
Fig. 2 shows the designed array for Lazel(29, 13) which is
obtained using the same number of transmit and receive ele-
ments as in Fig. 1. Specifically, the array configurations are
given by M = {(0, 0), (1, 0), (4, 0), (10, 0), (16, 0), (22, 0),
(24, 0), (27, 0), (29, 0)} and N = {(0, 0), (0, 1), (0, 6), (0, 9),
(0, 11), (0, 13)}.

Fig. 3 shows the azimuth-elevation beampatterns for
the conventional filled MIMO array in Fig. 1 and the pro-
posed coarray-based antenna configuration in Fig. 2, where
the same number of transmit and receive elements are used.
As can be seen, the proposed coarray design has narrower
beamwidths without any grating lobes both in azimuth and
elevation in comparison with the traditional filled virtual
array rectangular MIMO radar.

Inspired by [4], choosing M = {(0, 0), (0, 1), (1, 0), (0, 3)
, (3, 0)} and N = {(0, 0), (0, 6), (6, 0), (0, 13), (13, 0), (0, 40),
(40, 0), (0, 60), (60, 0)} leads to the achievement of L1D,63,63.
Fig. 4 shows the transmit and receive antenna locations, as
well as the virtual array and the resulting coarray. Fig. 4(b)
presents the coarray pair counts, omitting the pairs with zero
counts; as can be seen, only the pair locations along the

zero-spacing axes need to be filled.
To evaluate the angle resolution of this coarray config-

uration, a simulation scenario with three targets is consid-
ered. The targets have azimuth and elevation angles of (0, 0),
(2, 0), and (3, 5) degrees, respectively. Fig. 5 shows the
non-adaptive azimuth and elevation beampatterns as defined
in equations 10 and 11. It can be observed that the targets can
be resolved in both azimuth and elevation when the proposed
planar coarray is used. In contrast, when the same number of
transmit and receive antennas are used to form a 9 × 5 filled
MIMO virtual array, the targets cannot be resolved because
they are closer than the azimuth and elevation resolution lim-
its of that array.
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Fig. 4: (a) Transmit, receive, virtual, and coarray antenna lo-
cations. (b) Histogram of the number of coarray pairs, CM,N,
for the proposed MRA MIMO radar, Laz(63)∪Lel(63), with
M = 5 and N = 9.

4. LIMITATIONS

Although the proposed coarray designs increase angle reso-
lution, the nonlinear nature of the virtual array signal mul-
tiplications used to obtain coarray signals introduces several
limitations. First, the superposition property is not preserved
for multiple targets, which leads to additional parameter esti-
mation errors. Moreover, the noise signal vector is no longer
Gaussian, complicating the design of a GLRT detector.
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planar coarray and the traditional filled rectangular MIMO
radar, both using M = 5 and N = 9.

5. CONCLUSION

In this paper, we presented a signal processing framework
for multichannel FMCW radar systems employing sparse
planar coarray configurations. Our approach integrates
range-Doppler processing with CFAR detection to construct a
transmit-receive matrix, enabling high-resolution multi-target
localization in both azimuth and elevation. By leveraging a
coarray representation of the received signal, we demon-
strated the effectiveness of minimum redundancy arrays
(MRA) in enhancing angular resolution for planar MIMO
radar architectures. Through the derivation of coarray sig-
nal formulations, we illustrated how reducing redundancy in
virtual array configurations improves spatial sampling and an-
gular resolution. Additionally, we introduced an optimization
framework for designing planar MIMO minimum redun-
dancy arrays, achieving an expanded filled coarray virtual
aperture while minimizing the number of physical antennas.
Comparative simulations against conventional filled MIMO
arrays validated that our proposed coarray-based design at-
tains higher angular resolution, using the same number of
elements, while effectively mitigating grating lobes.
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