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Abstract—With the importance of signal processing in the next-
generation quantum-enhanced sensing systems firmly established
in recent times, this paper considers one of the mature quantum
sensing technologies: NV centers-based magnetometry. Focusing
on the two-dimensional current-carrying structures, we propose
a novel joint optimization formulation to obtain current maps
(images) considering all the components of the magnetic field
vector map along with physical constraints, which facilitate de-
convolution required in the processing. The paper systematically
works out the necessary algorithmic steps and captures the
typical results obtained on both synthetic and real data to bring
out the effectiveness of the technique in overcoming the challenges
faced by traditional methods.

Index Terms—joint optimization, image reconstruction, mag-
netometry, ADMM, plug-and-play method

I. INTRODUCTION

Quantum-enhanced sensing, with its ability to bring new
and enhanced capabilities compared to classical sensors, is
expected to create a significant impact in many industries [1],
[2]. Compared to other quantum technologies, the benefits can
be reaped in the short term with quantum sensors. Needless
to say, similar to their classical counterparts, quantum sensors
should move towards sensing systems with the tandem work-
ing of the rightly designed hardware and software to exploit
their full potential. Some of the core software modules in
quantum sensing are related to signal processing and the asso-
ciated algorithms. As remarked in our earlier work [3], which
examined magnetic field construction in the negatively charged
nitrogen-vacancy (NV) color centers-based magnetometers,
there is a possibility to view the problem of obtaining the
requisite outputs through the lens of signal processing. In the
current work, we reconsider current maps reconstruction from
the magnetic fields maps measured by a vector magnetometer
pertaining to its non-invasive measurements of ambient mag-
netic fields with high spatial resolution and high sensitivity.
Even for two-dimensional (2-D) sources, these reconstruction
problems are generally ill-conditioned inverse problems [4]–
[6], necessitating complex techniques for source retrieval.

To elaborate this, let B(x, y, z) be magnetic field at a given
point in space r = (x, y, z) that is related to its current sources
J(x′, y′, z′) situated at points r′ = (x′, y′, z′) bound to a
volume Ω = L× L× d through the Biot Savart law

B(r) =
µ0

4π

∫
Ω

J(r′)× (r − r′)

|r − r′|3
d3r′ (1)

where µ0 is the permeability of free space. When we constrain
our sources and measurements in a plane with an area of L×L,
parallelly placed to each other at a stand-off distance of z0
s.t. d ≪ L and d ≪ z0, then we can assume that the flow
is purely two-dimensional and thus J = (Jx, Jy, 0), for all
practical purposes. This facilitates us a simpler version of (1)
where magnetic field components (Bx, By, Bz) are related to
the convolution of planar current density with corresponding
Green’s functions.

Bx =
µ0

4π

∫
z0 Jy(x

′, y′)

[(x− x′)2 + (y − y′)2 + z20 ]
3/2

dx′dy′

= G3 ∗ Jy (2)

By =
µ0

4π

∫
−z0 Jx(x

′, y′)

[(x− x′)2 + (y − y′)2 + z20 ]
3/2

dx′dy′

= −G3 ∗ Jx (3)

Bz =
µ0

4π

∫
(y − y′) Jx(x

′, y′)− (x− x′) Jy(x
′, y′)

[(x− x′)2 + (y − y′)2 + z20 ]
3/2

dx′dy′

= G1 ∗ Jx −G2 ∗ Jy (4)

where ∗ denotes 2-D convolution operation, Gi where i ∈
{1, 2, 3} are kernels corresponding to the Green’s functions,
and the integral is bounded by the area of the current source
L × L. Note that the coordinate dependence of the magnetic
field has been suppressed for clarity. Adding the continuity
equation in charge-free region (∇.J = 0) to this gives a set of
four integral equations that relate B to J . These variables and
associated relations in the continuous domain are uniformly
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discretized for numerical computations, and in the following,
we consider their discrete versions only. We transform the
continuous equations into matrix forms where the discretized
Green’s function kernels can be identified as discrete filters.
The aim of the 2-D current reconstruction is to deconvolve

the magnetic field maps to obtain Jx, Jy ∈ RN×N using
known Green’s function filters in (2)-(4). Naively using Fourier
inverse filtering [2], [4], [5] in the process to estimate the
current density lead to a huge noise amplification in the image
as can be inferred from inverse equation in Discrete Fourier
Transform (DFT) domain (5).

F{J(y/x)} =
F{B(x/y)}
F{±G3}

= ± 2

µ0
exp

(
z0

√
k2x + k2y

)
b(x/y)

(5)

where F{ ·} represents the DFT operation and kx and ky are
the components of discrete spatial frequency and exp denotes
element-wise exponentiation. Note in (5), that Jy/x is related
to bx/y through a high-pass filter which amplifies the high
frequency components exponentially more than low frequency
components, present in the magnetic field. And since any noise
and other sharp artifacts have support on these high frequency
components, with increasing z0, they contribute increasingly
in the deconvolution, introducing a huge solution space [6].

To constrain the infinitely large solution space of the under-
determined system, appropriate regularizers are often used
[6]. But these methods are not robust and are inapplicable to
practical scenarios of low SNR and high stand-off distance.
Recently, we discussed how one can pose this inversion
as a general image restoration problem and hence utilize a
Plug-and-Play (PnP) image reconstruction framework which
allows state-of-the-art reconstruction through denoiser-driven
regularization [7] over traditional ones like total-variations
(TV) based regularization [8]. Block-matching and 3D filtering
(BM3D) [9] on account of its robust performance in image
denoising tasks has emerged as a well-suited denoiser as a
prior in the 2D current reconstruction from magnetic field
maps using a quantum sensor [8].

Traditionally, due to the prevalence of Superconducting
Quantum Interference Device (SQUID) and other scalar mag-
netometers, regularized current reconstruction is carried out
with only the perpendicular component of the magnetic field
(Bz). Using stream flow function (g = gz⃗ s.t. J = ∇ × g),
(4) can be converted to a simpler convolution equation Bz =
M ∗ g where M is the corresponding kernel but involves
an unstable retrieval of current densities due to derivative
operation [6]. As also discussed in [4], [5], Bz deconvolution
is insufficient for an exact solution as DC components of the
J are undetermined and cannot be reconstructed from the
measured Bz map. Since the path also involves singularities,
deconvolving only using Bz is observed to produce artifacts
in the reconstruction [2]. With the power of newly emerging
vector magnetometry, where all three components of the
magnetic field B in the lab frame can be measured, one can
provide more information for reconstruction [5], [10].

Here, we propose a new joint formulation for 2-D current
reconstruction integrating both vector magnetometer maps
and PnP-based regularizers, working out and adapting each
algorithmic step to our problem’s context. To mitigate the
practical issues discussed above, we introduce a weak coupling
through data-fidelity term of Bz along with the continuity term
and a regularizer (R) that can act on both the components of
J together pertaining to their similar noise and physical char-
acteristics. Considering vector B map in deconvolution can
lead to a more physically consistent current reconstruction as
the estimated J would properly reproduce whole B(x, y) map
instead of just a single component [10]. We employed appro-
priate boundary conditions to the B maps that can reconstruct
J maps consistently using the proposed formulation. This
also solves the problem of discontinuities in the reconstructed
current density components during independent deconvolution
of (2-3), specifically at the corners or splits where each of the
components is interdependent by the continuity equation. Our
experiments show that the proposed formulation consistently
performs better than the previous techniques at critical regions
like corners for practically relevant scenarios and can produce
a physically closer reconstruction of current maps.

The paper is organized as follows: in Section II, we propose
a novel technique that jointly solves for the 2-D current
reconstruction problem for vector current density maps. Such
an approach does not exist in the context of the addressed
problem to the best of our knowledge. The relevant results
captured in Section III demonstrate the applicability and use-
fulness of the technique, including an essential improvement
in reconstruction quality compared to the existing method on
real data. It is followed by concluding remarks in Section IV.

II. PROPOSED METHOD

We aim to deconvolve current densities jointly using the
following forward problem:

argmin
Jx,Jy

w1

2
∥Bx −G3 ∗ Jy∥22

+
w2

2
∥By +G3 ∗ Jx∥22

+
w3

2
∥Bz −G1 ∗ Jx +G2 ∗ Jy∥22

+ λ1 ∥Dx ∗ Jx +Dy ∗ Jy∥22
+ λ2R (Jx, Jy) (6)

Here, the first three terms are data-fidelity terms that try to
model the current flow such that it will produce the measured
magnetic field. The fourth term enforces the continuity equa-
tion (∇.J⃗ = ∂xJx + ∂yJy = 0), ensuring the absence of
sources or sinks of current flow. Here, Dx, Dy ∈ RN×N are
matrices encoding the finite differences operator [6]. Numeri-
cally, this condition of a physical current flow is hard to get sat-
isfied because of which it is added as a regularizer, providing a
relaxation in the optimization process. R (Jx, Jy) corresponds
to an extra regularizer that is needed to characterize the current
density reconstruction and further constrain the solution space.
Additionally, we used efficient variable splitting methods like
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Noise
levels

z0
(µm)

Deconvolution Approaches
Proposed Joint Deconvolution Using parallel components Using perpendicular component
S1 S2 S3 S1 S2 S3 S1 S2 S3

30 dB
7 28.9, 0.96 27.2, 0.85 19.5, 0.87 26.2, 0.92 24.5, 0.72 19.7, 0.87 22.6, 0.23 20.6, 0.29 12.3, 0.12
21 23.2, 0.87 21.2, 0.48 13.8, 0.64 22.8, 0.76 20.1, 0.48 13.9, 0.61 19.8, 0.17 19.0, 0.21 9.9, 0.10

20 dB
7 28.1, 0.85 25.6, 0.58 19.4, 0.53 25.5, 0.83 23.8, 0.49 19.3, 0.58 20.4, 0.30 22.1, 0.36 9.9, 0.07
21 22.1, 0.79 20.1, 0.42 12.2,0.34 21.8, 0.78 20.4, 0.48 12.7, 0.35 19.4, 0.15 19.7, 0.30 9.9, 0.05

TABLE I: Comparison of performance of proposed Joint Deconvolution in terms of PSNR and SSIM.

alternating direction method of multipliers (ADMM) [11] for
solving this complex, high-dimensional optimization problem.

A. Algorithmic steps for optimization

The optimization problem (6) can be written in standard
ADMM form as

argmin
Jx,Jy

w1

2

∥∥∥Bx − Ĝ3Jy

∥∥∥2
2
+

w2

2

∥∥∥By + Ĝ3Jx

∥∥∥2
2

+
w3

2

∥∥∥Bz − Ĝ1Jx + Ĝ2Jy

∥∥∥2
2
+ λ1

∥∥Z1x + Z1y

∥∥2
2

+ λ2R{Z2x , Z2y}

s.t.


D̂xJx
D̂yJy
Jx
Jy

 =


Z1x

Z1y

Z2x

Z2y

 (7)

where ˆ denotes the convolution matrix corresponding to its
respective kernel, J = (Jx, Jy) and Z = (Z1x , Z1y , Z2x , Z2y )
are auxiliary variables and U = (U1x , U1y , U2x , U2y ) will be
dual variable. It is to be noted that all variables are vectorized
accordingly in the context of (7). Following standard ADMM
procedure [7], an augmented Lagrangian Lρ(J ,Z,U) can be
derived from our separated optimization sub-problems (7) so
that J and Z can be optimized alternatively.

We get closed form solutions for J proximal operator:

J (k+1) = argmin
J

Lρ(J ,Z
(k),U (k)) =⇒

J (k+1)
x = F−1


−w1g

∗
3by + w3(g

∗
2bz + g∗2g1j

(k)
y )+

ρ (d∗x(z1x − u1x) + z2x − u2x)

w2g∗3g3 + w3g∗1g1 + ρ(d∗xdx + 1)


(8)

J (k+1)
y = F−1


w1g

∗
3bx − w3(g

∗
2bz − g∗2g1j

(k)
x )+

ρ
(
d∗y(z1y − u1y ) + z2y − u2y

)
w1g∗3g3 + w3g∗2g2 + ρ(d∗ydy + 1)

 (9)

where lower-case symbols represent respective 2-D discrete
fourier variables and ∗ denotes the complex conjugate opera-
tion on matrices. Using these expressions for J update brings
instabilities because of contribution of initialized Jx(Jy) in
Jy(Jx) update coming from Bz relation (4). Hence, a slight
modification can be done in the update by considering (8) and
(9) as a system of linear equations in two variables and elimi-
nating the other variable from the respective equation. This is

equivalent to saying that rather than alternately minimizing Lρ,
we are solving simultaneously for both the primal variables
(Jx and Jy) in a single step. Due to now decoupled update of
these primal variables, we observed a stable solution even after
incorporating contributions from Bz , making it equivalent to
the stream flow deconvolution [6] without facing issues that
can arise while taking derivatives [4].

Similarly, for Z update:

Z(k+1) = argmin
Z

Lρ(J
(k+1),Z,U (k)) =⇒

Z
(k+1)
1x

= F−1

[
−z

(k)
1y

+ ρ/λ1(dxj
(k+1)
x + u

(k)
1x

)

1 + ρ/λ1

]
(10)

Z
(k+1)
1y

= F−1

[
−z

(k)
1x

+ ρ/λ1(dyj
(k+1)
y + u

(k)
1y

)

1 + ρ/λ1

]
(11)

Z
(k+1)
2x

= Rλ2/ρ

(
J (k+1)
x + U

(k)
2x

)
(12)

Z
(k+1)
2y

= Rλ2/ρ

(
J (k+1)
y + U

(k)
2y

)
(13)

where updates for Z2x and Z2y comes directly from denoisers
as per PnP framework. The same trick discussed for (8) and
(9) can be applied to (10-11), which seems to be a stricter
condition leading to faster convergence [4].

Update for scaled dual variables U becomes:

U (k+1) = argmin
U

Lρ(J
(k+1),Z(k+1),U) =⇒

U
(k+1)
1x

= U
(k)
1x

+ F−1
{
d1j

(k+1)
x

}
− Z

(k+1)
1x

(14)

U
(k+1)
1y

= U
(k)
1y

+ F−1
{
d2j

(k+1)
y

}
− Z

(k+1)
1y

(15)

U
(k+1)
2x

= U
(k)
2x

− Z
(k+1)
2x

(16)

U
(k+1)
2y

= U
(k)
2y

− Z
(k+1)
2y

(17)

These optimization steps ((8)-(17)) are iterated over until
residual (R(k+1) = ||J (k+1) −J (k)||22 + ||Z(k+1) −Z(k)||22 +
||U (k+1) − U (k)||22) is below an empirically pre-determined
threshold ϵ > R(K).

B. Tackling outside the field of view

Another complication arises from the long-range nature
of current-induced magnetic fields in the reconstruction [4],
[5]. In order to obtain an accurate solution, one must make
assumptions about the behaviour of the current outside the
measurement window. Traditional symmetric padding leads to
different current directions at the same boundary from different
B-maps when considered together for joint deconvolution due
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to directionality in the magnetic field components. Instead, one
can use a more natural boundary condition for each component
of magnetic field such that the current flow is continuous and
consistent with other components of magnetic field. Hence,
we apply the following boundary conditions [4]:

Bx(x, y) = +Bx(−x, y); Bx(x, y) = −Bx(x,−y) (18)
By(x, y) = −By(−x, y); By(x, y) = +By(x,−y) (19)
Bz(x, y) = +Bz(−x, y); Bz(x, y) = +Bz(x,−y) (20)

III. RESULTS AND DISCUSSION

In this section, the potential of the proposed joint for-
mulation is quantitatively demonstrated while considering
three simulated geometries, encompassing identified critical
scenarios, of area 110 × 110 µm2, feature size 8 µm and
I = 600 µA. Particularly, three characteristics are simulated
(Fig. 1a): i) a bent wire (S1), ii) a circular coil (S2) with
radius of 40 µm, and iii) two straight wires (S3) separated by
8 µm with current flowing in the same direction. The sensor
is assumed to have a pixel size of ∆x = 1 µm, resulting
N = L/∆x = 110. J maps for each geometry is generated
using COMSOL multiphysics [12] on a regular grid. It is
to be noted that a relatively stable forward relations (2-4) is
employed to calculate B at z0 = 7 µm and 21 µm in the DFT
domain. Simulated Gaussian noise with zero mean was added
to have a target Peak Signal-to-Noise Ratio (PSNR) of 30
dB and 20 dB for the resulting B map. Quantitative analysis
of estimation of each of these geometries can be done using
relevant quantities like the estimated total current amplitude
(I) along with PSNR and structural similarity index measure
(SSIM) for fine-grained evaluation.

A summary of the typical results obtained is given in
Table I where PSNRs and SSIMs of the reconstructed ||J ||2
are calculated for proposed joint approach and other two
approaches using only parallel components [8] and using per-
pendicular component (adapted from [4] and [6]). Estimated
J maps obtained for the extreme case of z0 = 21 µm
and PSNR = 20 dB are also shown in Fig. 1. We found
the proposed approach to be quantitatively superior for all
the geometries consistently while achieving the goal of more
physical reconstructions. It should be noted that the problem
with just using Bz directly to reconstruct J is the resultant
unknown offset in the mean value of current amplitude [4].
One workaround of this problem can be the subtraction of the
mean value of each component of J , which may lead to other
artifacts and incorrect amplitude as shown in Fig. 1e. Table
I gives a clear picture that it is easier to produce isolated
rectilinear geometries than circular coils, which could be due
to the unsuitable grid. Notice in Table I and in Fig. 1 a poor
performance when deconvolving Bz with straight wires, which
happened due to the unresolved current-carrying wires.

A. Reconstruction with experimental data

We obtained Bz experimentally using a wide-field quantum
diamond microscope of a coil sample having the same
specifications as that of the simulated case but with a feature

0

100

200 |J|(Am
1)

(a)

5

10

15

|B|(
T)

(b)

PSNR: 22.12 dB 
 SSIM: 0.79

PSNR: 20.14 dB 
 SSIM: 0.42

PSNR: 12.20 dB 
 SSIM: 0.34

0

100

200 |J|(Am
1)

(c)

PSNR: 21.80 dB 
 SSIM:  0.78

PSNR: 20.38 dB 
 SSIM: 0.48

PSNR: 12.68 dB 
 SSIM: 0.35

0

100

200 |J|(Am
1)

(d)

PSNR: 19.43 dB 
 SSIM:  0.15

PSNR: 19.68 dB 
 SSIM: 0.30

PSNR: 9.94 dB 
 SSIM: 0.05

0

100

200 |J|(Am
1)

(e)

Fig. 1: (a) J maps of simulated geometries: S1, S2 and S3
respectively. (b) Magnetic field maps obtained from forward
model at z0 = 21 µm having PSNR = 20 dB. Notice, two
straight wires are not resolvable visibly in magnetic maps.
We showed estimated current density with (c) proposed joint
formulation, (d) using only parallel components or (e) using
just the perpendicular component, respectively.

size of 2 µm at z0 = 7 µm [13]. Parallel components (Bx and
By) are obtained using the relations in the DFT domain in a
charge-free region [10] that are shown in Fig. 2a. Estimated
current density through different routes is shown in Fig. 2b-
Fig.2h. Notice a better reconstruction at the corner of coils
and regions just around the coil (critical regions) in Fig. 2d
through our proposed joint deconvolution from reconstruction
through parallel components independently (Fig. 2e; [8]) or
just through perpendicular component (Fig. 2g, equivalent to
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Fig. 2: (a) Experimentally measured maps of B Components [10], (b) Joint-Estimation of |J | with only w3 = 0.0, (c) Joint-
Estimation of |J | with only w3 = 0.01, (d) Joint-Estimation of |J | with w1 = w2 = w3 = w4 = 1., (e) Separate-Estimation
of Jy, Jx from just Bx and By , (f) Joint-Estimation of |J | with w1 = w2 = 0.0, (g) Corrected Joint-Estimation of |J | with
w1 = w2 = 0.0 [4] and (h) Estimation of |J | through stream-flow function g [6]

[4]) or via stream-flow function (Fig. 2h; [6]). Again, we
subtracted the mean values of current maps from them to solve
the problem in Fig. 2f to obtain the current map in Fig. 2g. On
the other hand, Fig. 2h shows an excellent noise suppression,
but the known problem of instabilities due to derivative
operation gives very high unphysical current amplitudes in
the reconstruction. Different weights of the data-fidelity term
essentially implies different optimization problems, and the
exact combination of weights depend on the goal of the
problem. Therefore, we present the current estimation with
three different weights to the data-fidelity term corresponding
to Bz in Fig. 2b, 2c, and 2d.

IV. CONCLUSIONS

In this paper, estimating current density images in two
dimensions from magnetic field images measured at a dis-
tance from the source is attempted. A joint deconvolution
problem is formulated within an optimization framework,
employing contemporary signal processing techniques. The
suggested technique can be used for different applications
and can contribute to advances in signal processing in the
important field of quantum sensing. The proposition negotiates
the difficulty of direct deconvolution and also can accommo-
date additional noise/artifacts for future extensions. Further
enhancements to minimize errors caused by kernel mismatch,
due to wrong or lack of knowledge of the stand-off distance,
is one such direction. Parametrizing Green function filters,
enhancing reconstruction by employing trained deep learning
priors/denoisers for magnetic sensing, can be explored as well.
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