Micro-Doppler-Based UAVs Classification Using
Improved Quantum Genetic SVM
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Abstract—This paper addresses the critical challenge of classi-
fying small aerial targets, particularly unmanned aerial vehicles
(UAVs), using micro-Doppler radar signatures. We present a
novel, computationally efficient feature extraction method that
transforms raw radar data into a 108-dimensional spectral fea-
ture vector, capturing both dominant frequency components and
time-frequency energy distribution. This approach significantly
reduces data complexity, enabling the use of simpler, yet highly
effective, classifiers. We employ an Improved Quantum Genetic
Algorithm (IQGA) to optimize the hyperparameters of a Support
Vector Machine (SVM) with a Radial Basis Function (RBF)
kernel. The IQGA-SVM achieved a classification accuracy of
99.59% on the DIAT-uSAT dataset, outperforming standard
SVMs, Multilayer Perceptrons (MLPs), and deep learning models
such as VGG16, VGG19, and DIAT-RadSATNet. Our results
demonstrate that meticulously engineered spectral features pro-
vide a more discriminative representation than raw spectrogram
data, allowing simpler classifiers to achieve superior performance
with significantly lower computational overhead. This study
highlights the efficacy of feature engineering and quantum-
inspired optimization for robust and efficient UAV classification,
offering a practical solution for airspace security.

Index Terms—Micro-Doppler, UAV type recognition, quantum
genetic algorithm, feature extraction, radar signal processing

I. INTRODUCTION

The rapid increase in low-altitude unmanned aerial vehi-
cles (UAVs) poses a significant airspace security challenge.
Their small size and low detectability necessitate specialized
detection technologies to counter potential illicit activities and
protect critical infrastructure [1], [2]. Micro-Doppler radar
signatures play an important role in UAV type recognition.

Harmanny et al. in [3] stated that spectrograms and cep-
strograms can be used to extract key features of low-altitude
slow-moving small targets versus bio-life. The variance on
the extracted periodicity was used as a feature to distinguish
between single, stable rotor/propeller carrying targets and mul-
ticopters. In [4], authors extracted 13 features from intrinsic
mode functions, which, together with the TERRM classifier,
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were observed to possess discriminative information for UAVs
classification (non-UAV vs. fixed-wing UAV vs. rotary-wing
UAV). In [5], the authors proposed two novel features: the
number of P-crossing and the correlation of amplitude peaks
and used them to train and evaluate a binary-category classifier.

For spectrograms of micro-Doppler signatures, convolu-
tional neural networks (CNNs) present a logical analytical
framework. This very popular approach has been explored
in numerous works. In [6], the authors proposed a novel
image representation generated through the fusion of the
micro-Doppler signature and the cadence-velocity diagram,
termed the merged Doppler image. The GoogLeNet CNN
architecture was employed to classify these generated image
data. Similarly, classification based on a micro-Doppler spec-
trogram images, employing GoogleNet CNN architecture,
with the objective of distinguishing between drone and bird
classes, was proposed in [7]. The problem of the classification
between flying birds and rotary-wing drones using CNN was
considered also in [8]. The authors of [9] classified three drone
model types utilizing low-uncertainty micro-Doppler signature
images and ultra-lightweight CNN. To address aerial target
recognition with limited radar data, a robust relation network
(RRN-ATR-Net), a specialized CNN architecture designed
for few-shot learning, was implemented in [10]. In [11], the
authors utilized their proprietary DIAT-uSAT dataset, com-
prising micro-Doppler signature images of five distinct small
aerial targets. They proposed a transfer learning-based deep
CNN approach, employing VGG16 and VGGI19 as feature
extractors, to classify low radar cross-section aerial targets.
Subsequently, using the same dataset, [12] introduced a novel
model DIAT-RadSATNet. This model was designed according
to a set of novel principles and optimized across multiple fac-
tors, including layer configuration, parameter count, floating-
point operations (FLOPs), block structure, filter dimensions,
memory footprint, parallel path count, and classification accu-
racy. The model’s architecture was refined through a series of
comprehensive ablation studies.

While spectrogram-based CNNs represent a widely adopted
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approach, other techniques, such as a long short-term memory
(LSTM) neural network [13] applied to micro-Doppler signa-
ture data for the purposes of detecting and classifying small
UAVs, have been also investigated.

This study introduces computationally efficient and
position-invariant features for UAV classification, effectively
mitigating range dependency in radar cross-section measure-
ments. High classification accuracy is achieved using a kernel
SVM classifier whose parameters were optimized with an
Improved Quantum Genetic Algorithm (IQGA).

II. KERNEL SUPPORT VECTOR MACHINES

The fundamental concept behind Support Vector Machines
(SVMs) [14] involves identifying the optimal hyperplane

wl z+b=0, (1)

which separates data points: {(z1, y1), (Z2,92), -, (Tn,Yn) }s
where z; are feature vectors belonging to classes y;. The de-
termination of this hyperplane is achieved by maximizing the
margin, which quantifies the distance between the hyperplane
and the nearest data points of each class, referred to as support
vectors. Among the various kernel functions, the Radial Basis
Function (RBF) [15]:

K(zi,7;) = exp (—v[|z; — 2;])?) 2)

is widely adopted for modeling complex, non-linear decision
boundaries. The hyperparameter v controls the width of the
Gaussian function, thereby influencing the smoothness of the
decision boundary.

According to Karush-Kuhn-Tucker (KKT) conditions, the
determination of the hyperplane weight vector can be solved
by a dual optimization problem involving dual variables a;:

Do @i = 5 2y 2y @i Yy K (2, )
St iay;=0and C>a; >0
fori=1,...,n.

maximize:

subject to:

3)

The regularization parameter C' regulates the balance between
model complexity and training error, significantly impacting
the SVMs ability to generalize.

ITII. IMPROVED QUANTUM GENETIC ALGORITHM

To find optimal parameters C' and « of the SVM kernel,
an Improved Quantum Genetic Algorithm (IQGA) [16] was
applied. Since IQGA is based on principles of quantum com-
puting, instead of a single gene, there is a qubit represented
by [a, B]T, |a|?> +|B]?> = 1 and each individual is represented
as a qubits’ vector:

ar | oas | o] am

Br | B2 | o | Bm]’

The chromosomes code SVM parameters: «v and C'. With each
individual, a fitness function f(p;) is connected. The current
quantum state |¢) is given as |¢)) = «|0) + B|1), where «
is a probability the quantum state collapses into the ’0’ state,

4)

and g is a probability the quantum state collapses into the *1’
state.

In quantum genetic algorithms, the individuals evolve ac-
cording to a quantum rotation gate:

cos(A;) — sin(Ab;) }
sin(Af;) cos(Af;) .

Next, the chromosomes are updated:

)
W) = R(AD)x|y) = { gﬁf((ﬁg)) Zoiifﬁ?) } m B [%j)

|t))’ is a new quantum state, and the direction and value of
A are set by strategy adjusting presented in Table I. Let
q(p;) and ¢(b;) denote the current qubit state of individual
p; and the current best individual, respectively. The fitness of
individual p; is given by f(p;) with fop representing the fitness
of the best individual. The rotation angle applied to ¢(p;)
is represented by Af;. The following four columns define
the rotation direction: where +1 indicates counter-clockwise,
—1 indicates clockwise, and £1 signifies a randomly selected
direction.

R(AY) = {

TABLE 1
LOOKUP TABLE OF ROTATION SCHEME
q(pi)  q(bi) f(pi) > for A  iffs >0 ;s <0 ay Bi
0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False o +1 —1 0 +1
0 1 True o —1 +1 +1 0
1 0 False o —1 +1 +1 0
1 0 True o +1 —1 0 +1
1 1 False 0 0 0 0 0
1 1 True 0 0 0 0 0

The population is split into subpopulations with equal num-
bers of individuals, and with a given number of iterations, ran-
domly selected individuals are exchanged through crossover
operations. To modulate the search process (diversification and
intensification) the rotation angle is iteratively reduced. Let
Af; represent the rotation angle at iteration 4, then:

Aez = k(emax - emin) + 9min (7)

and k= : f opt — f c

= arcsin ———, (8)

opt

where fo is the optimal individual fitness and f. is the
current individual fitness, Oy, and O, are the maximum
and minimum angles of rotation. To protect from premature
convergence, if the qubit parameters « and 3 approach values
of 0 or 1 within a tolerance of ¢, they are adjusted accordingly
at the quantum convergence gate H. [17]:

[08]] = He(avi, Bi, AG;). )
For [o/ B/]T = R(AW;)[c.B/]T, we consider the cases:

o if |a/|*> < € and |BY)> > 1 — ¢, then [a/B]]T =

[VevT—¢T,
e if /> > 1 — ¢ and [B'2 < e then [a}B]T =

W= evl,
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o else [aip]T = [/ BT

The main steps of IQGA are as follows:

1) Initialization: determine C' and ~ range (C, and ~,, re-
spectively), population size n, iteration number itery,x,
set iter = 0, Copt = 1, Yopt = 0, fopr = 0, calculate
number of necessary qubits to code C' and ~y, set number
of subpopulations Vg, determine iteration interval for
Crossover crier and O, and 6, values.

2) Initialize first population: set « and  to random values
in (0,1).

3) Divide the population into /N, subpopulations.

4) Evaluation: train SVM model and calculate accuracy on
the validation set.

5) Record the best individual and its fitness fop.

6) Evolution: for each subpopulation, update the individ-
vals by performing a dynamic rotation angle quantum
gate operation, use quantum convergence gate H., set
iter = iter 4 1.

7) Apply mutation.

8) If iter is equal to crjse,, do crossover.

9) If the stop condition is not met, go to step 3. Else, return
the best values of Cop and op.

IV. DATASET

The dataset used to evaluate the proposed method, known as
DIAT-uSAT, originates from [11], [12]. This dataset comprises
4849 UAV signals recorded using a continuous-wave radar
operating in the X band. The authors recorded five different
targets and categorized them into six classes: two-blade and
three-blade rotors (each with short and long blades), quad-
copters, bionic birds, and a mixed class combining a two-blade
rotor and a bionic bird.

Each target was captured in 3-second-long recordings, pre-
serving the echo of the target while maintaining a constant
position during flight. A detailed description of the database is
provided in [11], [12]; however, the key parameters relevant to
this work are summarized in Table II. Notably, the revolutions
per minute (RPM) play a crucial role in further analysis.

TABLE II
CLASSES OF SMALL AERIAL TARGETS IN DIAT-uSAT DATASET

Class name
Two-blade rotor
Three short-blade rotor
Three long-blade rotor
Quadcopter
Bionic bird
Two-blade rotor & Bionic bird

Approx. speed of operation
300 — 1740 RPM
250 — 1410 RPM
200 — 1050 RPM
2000 — 7000 RPM
2 — 4 flaps/s
300 — 1530 RPM & 2 — 4 flaps/s

In the original dataset, the authors processed the signals
into spectrograms, with each signal first undergoing low-pass
filtering (0 — 2 kHz) to remove high-frequency artifacts. The
resulting spectrograms amounted to a total data volume of
1052.9 MB. In this work, we significantly reduced the data
size by extracting 4849 compact feature vectors (of only 108
features), making the dataset more lightweight (3.99 MB) and
efficient for further processing.

V. FEATURE EXTRACTION

The feature extraction can be summarized as follows. The
signal undergoes preprocessing, where it is centered by re-
moving the mean, downsampled to reduce data size, and
filtered using a high-pass (above 5 Hz) filter to eliminate low-
frequency noise, antenna leakage, and clutter.

Following preprocessing, frequency-domain analysis is per-
formed by computing the Fast Fourier Transform (FFT) of the
filtered signal. From the normalized amplitude spectrum, the
five dominant frequency peaks were identified. These peaks,
visualized for all categories of analyzed UAVs in the left
column of Fig. 1, represent critical spectral components and
constitute the first portion of the extracted feature vector. A
search for frequency peaks was conducted within the 0-50 Hz
range for all classes. While quadcopters exhibit approximate
operational speeds ranging from 2000 to 7000 RPM (Table II),
which theoretically translates to frequency peaks within the
33-116 Hz range, the requirement for a unified feature extrac-
tion and classification pipeline across all aerial target classes
was paramount. This unification, essential for the automatic
recognition of UAV categories, dictated the application of the
consistent 0—50 Hz search range to all input signatures.
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Fig. 1. Signal preprocessing and feature extraction: five dominant frequency
peaks (5 features), spectrograms, time-integrated spectrograms (103 features).

To incorporate time-frequency information, the spectrogram
of the original, full-band signal z[n] is computed. The spec-
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trogram S[t, f] represents the squared magnitude of the Short-
Time Fourier Transform (STFT):

S[t, f] = |[STFT(x[n))[*. (10)

This captures the frequency evolution over time. A frequency
range of 0 to 2000 Hz, shown in spectrograms presented in
the central column of Fig. 1, is selected to focus on relevant
spectral components.

The time-integrated magnitude of the spectrogram within
this range is then calculated as:

I[f] =St f] for 0 < f < 2000 Hz. (11)
t
This time-integrated magnitude I[f] provides a representation
of the spectral energy distribution over the selected frequency
range and is presented in the right column of Fig. 1.
Subsequently, the five extracted dominant frequency peaks
and the 103 elements of the time-integrated spectrogram mag-
nitude I[f] are concatenated, resulting in a 108-dimensional
feature vector!. This representation of 4849 signals compresses
the dataset into a 3.99 MB MAT data file. This vector serves
as the input for the subsequent automatic classification of
small aerial targets. The combined feature vector effectively
encapsulates both the dominant frequency components and the
time-frequency energy distribution of the signal, providing a
comprehensive representation suitable for classification.

VI. NUMERICAL EXPERIMENT AND DISCUSSION

The IQGA-SVM was trained and optimized exclusively
on 90% of DIAT-uSAT dataset, preserving the data division
applied in [11]. The training set consisted of 80% and the
validation set of 10% of randomly chosen data from the
mentioned 90%. The remaining 10% was used for testing. We
examined the algorithm for the following sets of parameters:
population size P = 40, number of subpopulation N, = 4,
crossover threshold crie; = 10, as a mutation we switched
values in a random qubit. The experiments were held for
the following 0 range: Opyx = 7/2 and Oy = 7/5 and
€ = 0.0001. The values of C and ~ are from the predefined
neighborhood C' € [0.4,4], v € [1077,1.0]. The resulting
confusion matrix for the IQGA-SVM is shown in Fig. 2.

For comparative analysis, the DIAT-uSAT dataset was also
classified using standard SVM and MLP. The classification
accuracies are presented in Table III. The results of classifying
small aerial targets from the DIAT-uSAT dataset demonstrate
a clear advantage of employing engineered spectral features
(according to method proposed in Section V) over direct
processing of colorful spectrograms (as in [11] and [12]). Our
feature extraction methodology, which reduced the complex
signal information into a concise 108-dimensional feature vec-
tor, proved highly effective across various classifiers. Notably,
the IQGA-SVM, employing an RBF kernel and optimized
parameters Cop and 7op, achieved a remarkable accuracy of
99.59%. This significantly surpasses the performance of all

IThe MATLAB function is publicly available at: https:/github.com/
kabratkiewicz/Micro- Doppler-Feature- Extraction

Two-blade Rotor %)@ 0 0 0O 0 O
« Three-short-blade Rotor- 1 i} 0 0 0 0
[
£ Three-long-blade Rotor- 0 0 m 00 o
o Quadcopter- 0 0 O 0 0
2
[ BionicBird- 0 0 0 0 m 0
Mixed- 0 0 1 0 om
Moo, s e Oy Yo, i
by, Se. e, %0 e Sor
% S0, 0 i,
N oo/r*égé/ o
o G, o,
R, 10,
0%,

Predicted labels

Fig. 2. Confusion matrix for IQGA-SVM, trained on 80%, validated on 10%
and tested on 10% of DIAT-uSAT dataset.

other models, including deep learning architectures, underscor-
ing the power of well-crafted features in capturing essential
discriminative information. On a computer with AMD Ryzen
Threadripper PRO 5955WX (16-cores, 4 GHz, 128 GB RAM),
the average processing time for a single radar signature was
150 ms in MATLAB, which is short for processing a 3-second
recording. Furthermore, UAV type recognition in Python was
completed in under 97 ps. This rapid computational capability
allows the trained IQGA-SVM to be effectively implemented
in real-time aerial target recognition systems.

The effectiveness of our feature set is further evidenced by
the strong performance of simpler classifiers. Standard SVM
with an RBF kernel, despite not benefiting from the IQGA
optimization, still achieved a respectable accuracy of 95.88%.
This indicates that the extracted features are inherently robust
and informative. Moreover, the MLP models showcased a
consistent improvement in accuracy with increasing network
depth, culminating in a 98.97% accuracy for the 3-layer MLP.
This trend highlights the ability of these features to facilitate
training even in relatively straightforward network structures.

In stark contrast, the deep learning models: VGG16 and
VGG19 from [11], and DIAT-RadSATNet from [12], which
directly processed colorful spectrograms of size [224 x 224 x
3], exhibited lower overall performance. While these models
achieved accuracies ranging from 95% to 97.3%, they required
significantly larger parameter counts and more complex archi-
tectures. VGG16 and VGG19, in particular, utilized over 138
million and 143 million parameters, respectively, compared to
the IQGA-SVM. Even DIAT-RadSATNet model, with its more
efficient design, still employed 0.45 million parameters. This
discrepancy in parameter counts highlights the computational
efficiency of our feature extraction approach, which allows for
high accuracy with significantly reduced model complexity.

The results strongly suggest that the detailed spectral in-
formation encapsulated within our 108 features provides a
more discriminative representation of the targets compared
to the raw spectrogram data. By focusing on key spectral
components and their temporal evolution, we effectively con-
densed the essential information, enabling simpler classifiers to
outperform complex deep learning models. This demonstrates
the potential of signal processing and feature engineering to
streamline classification tasks, especially in scenarios where
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TABLE III
CLASSIFICATION ACCURACY TO 6 CLASSES OF SMALL AERIAL TARGETS FROM DIAT-uSAT DATASET

Classifier Kernel Params. No. Features Accuracy [%] No. Classifier Params.
IQGA-SVM (kernel = RBF) { i:ﬁ:; ;4755 %104 108 99.59 2 + No. support vectors
SVM (kernel = RBF) C=1, y=1/108 108 95.88 2 + No. support vectors
SVM (kernel = Linear) C=1 108 93.40 1+15%109

MLP (1 layer: 100) - 108 97.53 11,506

MLP (2 layers: 100-100) - 108 98.14 21,606

MLP (3 layers: 100-100-100) - 108 98.97 31,706
VGGI16 [11] (16 layers) - 224 x 224 X 3 95.00 138M

VGG19 [11] (19 layers) - 224 x 224 x 3 97.00 143M
DIAT-RadSATNet [12] (4 RsE blocks, 40 layers) — 224 x 224 X 3 97.30 0.45M

computational resources are limited or real-time processing is
crucial. Furthermore, the ability to achieve high accuracy with
a small number of features opens the door for more efficient
and interpretable classification systems.

VII. CONCLUSION

The results demonstrate the effectiveness of our feature
extraction and signal preprocessing. By distilling the raw
signal into a concise 108-dimensional feature vector, we
enabled simpler classifiers, specifically the SVM and deeper
MLP architectures, to achieve exceptional classification accu-
racy. Notably, the IQGA-SVM, with its optimized parameters,
achieved accuracy of 99.59% and outperformed all other mod-
els, including complex deep learning networks. This highlights
the power of well-engineered features in capturing the essential
information required for accurate classification. In contrast,
while deep learning models like VGG16, VGG19, and DIAT-
RadSATNet achieved respectable results, they relied on signifi-
cantly larger parameter counts and more complex architectures
to process raw spectrograms. Our approach underscores that
sophisticated feature extraction can streamline the classifica-
tion process, allowing simpler and more efficient classifiers to
deliver superior performance compared to resource-intensive
deep learning models. This signifies a substantial advantage
in applications where computational efficiency and model
simplicity are paramount.
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