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Abstract—Future space exploration missions envision multi-
agent networks autonomously conducting subsurface exploration.
Achieving this requires distributed subsurface imaging. Pre-
viously, we introduced the adapt-then-combine full waveform
inversion (ATCFWI) in both the time and frequency domains,
enabling each receiver in a seismic network to generate high-
resolution subsurface images locally through data exchange with
neighboring receivers. To further enhance imaging quality, we
explore the regularization of local cost functions. Specifically, we
incorporate Tikhonov and total variation (TV) regularization.
Tikhonov regularization promotes smooth structural recovery,
while TV regularization enhances edge sharpness and contrast.
We integrate both methods into ATCFWI to enable robust imag-
ing in a distributed fashion. Through numerical evaluations, we
demonstrate that ATCFWI, combined with these regularization
techniques, significantly improves imaging performance across
all receivers. Code for our proposed method is available on
https://github.com/bshin/fd-atcfwi.

Index Terms—Full waveform inversion, seismic imaging, multi-
agent seismic exploration, distributed imaging

I. INTRODUCTION

Detecting lava tubes or caves on the Moon and Mars is a
key challenge for future planetary exploration. These subsur-
face structures offer significant advantages, including stable
temperatures and natural protection from cosmic radiation,
making them promising candidates for astronaut habitats and
equipment storage in upcoming space missions [1], [2], [3].
To gain a deeper understanding of the lunar and Martian
subsurface and to identify such structures, autonomous multi-
agent systems have been proposed [4], [5], [6].

One potential approach involves deploying robotic agents
equipped with geophones to record seismic measurements, as
illustrated in Fig. 1. These measurements are then used to
collaboratively image relevant subsurface structures within the
multi-agent network. Additionally, the measurement positions
of the agents are optimized based on the current subsur-
face estimates to refine imaging results. Implementing such
a system requires distributed data processing to effectively
solve the imaging problem in a cooperative manner. This
allows each agent to estimate the subsurface structure without
direct access to all measurement data within the network.
Each agent can then utilize this estimate to reposition itself
for improved sampling and enhanced imaging accuracy. To
achieve this, we previously proposed the frequency-domain
adapt-then-combine full waveform inversion (FD-ATCFWI),
a method that enables high-resolution subsurface imaging in
a distributed fashion [7]. Specifically, each agent obtains a

Fig. 1: Concept of a multi-agent network performing 2D subsurface
imaging. A source ⋆ is placed on the surface and the agents measure
seismic data using an on-board geophone. The goal is to obtain
subsurface images in a cooperative fashion by data exchange over
wireless connections (blue arrows) among the agents.

global subsurface image through data exchange with only its
direct neighbors. The resulting estimate closely approximates
the centralized imaging outcome of traditional full waveform
inversion (FWI) while remaining independent of the agent’s
sampling position.

In this work, we investigate the regularization of the
cost functional in FD-ATCFWI to further enhance imaging
quality. Inspired by [8], we incorporate a combination of
Tikhonov and total variation (TV) regularization to improve
the accuracy of high-contrast structures and anomaly recovery.
We demonstrate that, particularly in noisy environments, this
regularization significantly enhances imaging quality across
all receivers compared to using the standard cost functional.
Furthermore, we show that FD-ATCFWI inherently provides
robustness against measurement noise due to its built-in data
exchange averaging mechanism.

II. DISTRIBUTED SUBSURFACE IMAGING

We first introduce the seismic network model before giving
a brief review of the (centralized) FWI in the frequency
domain. Afterwards, we introduce our proposed FD-ATCFWI
with Tikhonov and TV regularization.

A. Seismic network model

We assume an array of NR seismic receivers or geophones
arranged in a line on the surface above the domain of interest
Ω. Each receiver r is associated with a set of neighbors Nr,
which includes all receivers ℓ capable of bidirectional data
exchange with r as well as r itself. Moreover, we assume that
the network forms a connected graph, ensuring that any two
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receivers are reachable via a multi-hop connection, preventing
any separation of the network graph.

B. Frequency-Domain Full Waveform Inversion

We briefly review full waveform inversion (FWI) in the
frequency domain to provide context of our proposed method.
In FWI we seek a subsurface model m ∈ RNxNz that
represents spatial distribution of a material parameter such as
wave velocity, density, etc. Nx, Nz are the number of grid cells
in the two-dimensional discretized subsurface domain Ω. This
can be achieved by matching predicted, synthesized seismic
data dsyn

s ∈ CNR to observed data dobs
s ∈ CNR from NR

receivers by iteratively adapting the parameter m. Note that
the data is assumed to be in the frequency domain and is
therefore in general complex. For NS source positions and a
specific frequency ω the optimization problem in FWI can be
formulated as

min
m

J (m) =
1

2

NS∑
s=1

||PTus(ω,m)︸ ︷︷ ︸
dsyn

s (ω,m)

−dobs
s (ω)||22 +R(m)

(1a)
s.t. A(ω,m)us(ω,m) = fs(ω). (1b)

The functional R(m) denotes a regularization term that inte-
grates prior assumptions on m into the optimization problem.
Furthermore, P ∈ RNxNz×NR is a sampling matrix that
extracts the predicted data at the respective receiver positions
from the synthesized wavefield us(ω,m) ∈ CNxNz . This
wavefield is obtained by solving the Helmholtz equation that
describes wave propagation in the frequency domain. Assum-
ing finite-difference approximation, the Helmholtz equation
can be expressed by the linear system of equations given
in (1b). Here, A(ω,m) ∈ CNxNz×NxNz is the discretized
forward operator, us(ω,m) ∈ CNxNz the wavefield in the
frequency domain and fs(ω) ∈ CNxNz the source signal
also in frequency domain at frequency ω and for source
s. Regarding dobs

s (ω), we assume additive zero-mean white
Gaussian noise n ∈ CNR on the wavefield amplitudes:

dobs
s = PTus(ω,m

⋆) + n (2)

where m⋆ is the true (discretized) subsurface model. To
find a suitable subsurface model m iteratively, the gradient
of J (m) wrt. m is required. However, (1a) is constrained
by the partial differential equation (PDE) in (1b) and thus,
calculation of the derivative is not straightforward. For such
optimization problems the adjoint-state method can be used
which essentially employs Lagrange multipliers, cf. [9]. It
avoids costly computations of the Jacobian matrix, i.e., the
sensitivities of the observed data wrt. the model parameters
m, but requires numerical solution of two PDEs. With the
FWI gradient available, numerical optimization schemes such
as nonlinear conjugate gradient or quasi-Newton methods can
be applied to iteratively approach a suitable subsurface model,
cf. [10].

C. Frequency-Domain Adapt-Then-Combine Full Waveform
Inversion

In the following, we introduce the frequency-domain adapt-
then-combine full waveform inversion (FD-ATCFWI) which
we proposed in [7]. In contrast to traditional FWI, FD-
ATCFWI allows for distributed subsurface imaging within a
network of seismic receivers. In particular, the receivers do not
need to be connected in a full mesh topology. As long as the
network topology builds a connected graph, the FD-ATCFWI
enables receivers to achieve estimates of the complete subsur-
face locally by sharing data only with connected neighboring
receivers.

Different from [7] where no regularization has been con-
sidered we introduce FD-ATCFWI here with the possibility
of integrating regularization into the imaging framework. As
a first step, we separate the global FWI cost (1a) for a single
frequency ω over the NR receivers in the network, i.e.,

J (m, ω) =

NR∑
r=1

Jr(m, ω) (3)

with

Jr(m, ω) =
1

2

∑
s

|pT
rus(ω,m)− dobss,r (ω)|2 +Rr(m). (4)

Here, Rr(m) denotes a receiver-specific regularization term
on the subsurface estimate m and pr is the r-th column of
sampling matrix P. To reconstruct a subsurface image locally
at each receiver r we apply the adapt-then-combine technique
[11]. To this end, we introduce receiver-specific subsurface
models mr and calculate the gradient of Jr(mr, ω) wrt. mr

using the adjoint-state method:

dJr(mr)

dmr
= Re

{∑
s

ω2λ∗
s,r(ω,mr)⊙ us,r(ω,mr)

}

+
dRr(mr)

dmr
= δmr (5)

Here, ∗ denotes complex conjugate of the matrix entries
and ⊙ is an element-wise multiplication. The gradient δmr

is now specific to receiver r based on its model mr. The
variable λs(ω,mr) ∈ CNxNz is the adjoint-state wavefield (or
the Lagrange multiplier) which is computed by solving the
following linear system of equations for each source s:

AH(ω,mr)λs,r(ω,mr) = pT
rus,r(ω,mr)− dobss,r (ω) (6)

In (6) we need to solve an adapted Helmholtz equation where
the data residuals us,r(ω,mr)−dobs

s,r (ω) are placed as source
terms at the receiver positions. Finally, we apply the ATC to
obtain update equations for each receiver’s subsurface mr:

(Adapt) m̃[k+1]
r = m[k]

r + α[k]
∑
ℓ∈Nr

aℓrδm
[k]
ℓ (7a)

(Combine) m[k+1]
r =

∑
ℓ∈Nr

bℓrm̃
[k+1]
ℓ (7b)

Coefficients aℓr, bℓr ≥ 0 are combination weights that deter-
mine how to weight gradients and subsurface models in the
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data fusion process, cf. [11]. One simple choice that guarantees
convergence is aℓr = bℓr = 1/|Nr|,∀ℓ ∈ Nr, which we also
use in our evaluations.

III. REGULARIZATION FOR SUBSURFACE IMAGING

In the following, we introduce regularization terms which
we integrate into FD-ATCFWI to enhance its imaging per-
formance. When introducing the regularization functions and
their respective derivatives we formulate these in the continu-
ous domain to simplify understanding of the content. Thus, for
the following description the subsurface is considered to be a
continuous scalar function m(x) over spatial coordinate x.

A. Tikhonov Regularization

One of the most commonly used regularization terms is the
Tikhonov regularization. In FWI it can be used in combination
with a prior subsurface model mprior(x), cf. [10]:

RTikh,1(m) =
1

2

∫
Ω

|m(x)−mprior(x)|2 dx. (8)

To calculate the respective derivative we make use of func-
tional derivatives [12, Appendix D] resulting in

d

dm
RTikh,1(m) = m(x)−mprior(x). (9)

The function RTikh,1
r (m) penalizes significant changes from the

prior subsurface model and therefore helps in reducing noise
artifacts in the subsurface image.

Another possibility is to constrain the gradient of the
subsurface model [8], i.e.,

RTikh,2(m) =

∫
Ω

|∇m(x)|2 dx. (10)

Similar to RTikh,1(m) it suppresses high-frequency noise ar-
tifacts and stabilizes the inversion process. In addition, it is
useful for obtaining a smooth, low-frequency subsurface model
that can be refined at higher frequencies. Its corresponding
derivative wrt. m can be calculated via the Laplacian:

d

dm
RTikh,2(m) = −∇2m(x). (11)

B. Total Variation Regularization

In contrast to Tikhonov regularization RTikh,2
r which uses

the ℓ2-norm, the total variation (TV) regularization employs
an ℓ1-norm on the gradient of the subsurface model m(x) [13]:

RTV(m) =

∫
Ω

|∇m(x)|dx, (12)

where |∇m(x)| = | ∂
∂xm(x)| + | ∂

∂zm(x)|. By using the ℓ1-
norm on ∇m the TV regularization is suitable for recovery of
blocky structures and higher contrasts in the subsurface image.
Calculating the derivative of RTV

r (m) wrt. m is not possible
in closed-form due to the non-differentiable ℓ1-norm. One
common approach to circumvent this issue is to use a smooth
approximation of the ℓ1-norm. Other possibilities include us-
ing proximal operators [13], primal-dual hybrid gradient [14]

or the alternating direction method of multipliers [15]. To keep
investigations simple we rely on a smooth approximation, i.e.,

RTV(m) =

∫
Ω

√
|∇m(x)|2 + ϵdx, (13)

where ϵ > 0 determines how smoothly the ℓ1-norm is approx-
imated. While a high ϵ results in a smooth approximation, a
low ϵ allows for improved approximation of the ℓ1-norm and
therefore, sharper edges in the image. However, choosing ϵ
too small can lead to numerical instabilities and artifacts in the
image. One heuristic rule is to select ϵ = c ·max(|∇m(x))|)
where c is a small scaling factor in the range 10−4 to 10−2.
Finally, the derivative wrt. m can be calculated in closed-form:

d

dm
RTV(m) = −∇ · ∇m(x)√

|∇m(x)|2 + ϵ
. (14)

C. Combination of Tikhonov and TV Regularization

The regularization terms described previously can be com-
bined to improve the imaging performance. To this end, we
define for each receiver r:

Rr(m) = λTikh,1RTikh,1
r (m) + λTikh,2RTikh,2

r (m)

+ λTVRTV
r (m). (15)

The derivative of Rr(m) wrt. m is then given accordingly
by the sum of the respective derivatives. This combined
Tikhonov-Total variation (TT) regularization is used in (5)
to adjust the receiver-specific gradient δmr in FD-ATCFWI.
From (7a) we see that in each iteration of FD-ATCFWI
gradients from neighboring receivers are fused. Therefore, also
data on the regularization terms from neighboring receivers
are included into the receiver’s local adaptation procedure of
mr. The parameters λTikh,1, λTikh,2, λTV > 0 determine how
to weight the different regularization terms. Balancing these
parameters is crucial for good imaging performance especially
for noisy measurements. Moreover, they usually depend on the
SNR and need to be adjusted accordingly.

IV. NUMERICAL RESULTS

We investigate imaging performance of FD-ATCFWI with
TT regularization for a synthetic subsurface model with an
increasing velocity in the background and two elliptic anoma-
lies with velocities v1 = 1.8 km s−1 and v2 = 1.6 km s−1. The
spatial domain of size 1.4 km × 0.5 km is discretized with a
grid spacing of ∆x = ∆z = 10m. We assume NR = 24
receivers and NS = 20 sources which are uniformly arranged
over the surface. Furthermore, each receiver is connected to
a maximum of three receivers to their left- and right-hand-
side, respectively. The source signal is a Ricker wavelet with
dominant frequency fdom = 6Hz. As starting model we use the
background velocity model, i.e., we assume knowledge of the
background model but no prior information about the elliptic
anomalies. With regard to the frequencies we select the range
2Hz to 8Hz with a frequency step of ∆f = 1Hz. For both
FD-ATCFWI and FWI we perform NFWI = 50 iterations per
frequency. After inversion of one frequency we employ the
obtained mr to initialize the subsurface model for the next
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Fig. 2: Imaging results of FWI and FD-ATCFWI with TT regular-
ization at SNR = 20dB. For FD-ATCFWI the respective receiver
locations are indicated by ▼. The last row depicts results of FD-
ATCFWI with TT and full mesh connectivity.

TABLE I: Selection of regularization parameters for FWI and FD-
ATCFWI.

Method λTikh,1 λTikh,2 λTV

FWI 10−9 3 · 10−9 10−9

FD-ATCFWI 3 · 10−10 4 · 10−10 3.5 · 10−10

frequency. As an initial step size we choose α[0] = 0.01 which
is then exponentially reduced over the iterations to facilitate
convergence. The selected regularization parameters for both
FWI and FD-ATCFWI are summarized in Table I.

A. Imaging Results

Fig. 2 depicts the true squared slowness model and the
recovered subsurface images by FWI and FD-ATCFWI with
and without TT regularization for an SNR = 20dB. The noise
variance corresponding to the SNR is computed based on the
energy of the seismic traces averaged over all receivers. We
observe that FWI is capable of recovering both anomalies
but with strong artifacts due to measurement noise. Adding
regularization enhances the imaging result significantly as can
be seen for FWI TT. In a similar way, without regularization
FD-ATCFWI obtains subsurface images with strong artifacts
that severely reduce accuracy. Furthermore, while the outer
shapes are reconstructed well amplitudes in the inner parts
of the anomalies are not recovered with high accuracy. In
contrast, when using TT regularization FD-ATCFWI is able

to recover accurate subsurface images similar to FWI TT. In
particular, the imaging results are coherent over all receivers
independent of their sampling position and have significant re-
duction of noise artifacts. When using a full mesh connectivity
the imaging results can be further enhanced resulting in nearly
identical imaging results as for the centralized FWI TT.

B. Local Gradients and Subsurface Models

In Fig. 3 we show examples of receiver-specific gradients
after the adapt step (7a) with neighboring gradient information
for different frequencies using FD-ATCFWI with TT. Due to
different receiver positions the respective gradients differ from
each other. At 3Hz, structures of the elliptic anomalies are
only visible for the middle receiver. However, as the frequency
increases and as such the information diffusion through the
seismic network, contours of the anomalies become more
visible. Here, one can also observe the effect of the TV
regularization that enables sharp lines of the elliptic anomalies,
see the example at 7Hz.

Corresponding to Fig. 3, in Fig. 4 we show local subsurface
models at different frequencies after the combine step (7b).
We observe that at low frequencies rough structures of the
anomalies are recovered while at higher frequencies details
of the contour and the inner structure of the anomalies are
revealed. Furthermore, especially at frequencies 3Hz and 5Hz
anomalies are differently well recovered depending on the
receiver location: The leftmost receiver can recover the left
ellipse better than the right ellipse and vice versa for the
rightmost receiver. As the frequency increases and therefore,
also the number of data exchanges among the receivers this
difference in reconstruction is reduced, cf. example at 7Hz.

C. Error Curves

Fig. 5 depicts imaging performance in terms of normalized
mean square error (NMSE) and structural similarity index
measure (SSIM). The NMSE is computed between true model
m⋆ and estimated subsurface model mr and then averaged
over all receivers. The SSIM is a perception-based metric that
is used to compare similarity between two images [16]. Since
it includes structural information of the images it aligns better
with human perspective of similarity. From Fig. 5 we observe
that FD-ATCFWI with TT performs close to FWI with TT for
both NMSE and SSIM. In terms of SSIM, one notices that
FD-ATCFWI experiences less fluctuations for both TT and
without regularization. This behavior is due to the averaging
process among the receivers. Moreover, FD-ATCFWI without
TT performs better than the corresponding FWI wrt. SSIM but
worse in terms of NMSE. This shows that the SSIM reflects
more accurately our perception of imaging quality in this case.
For FD-ATCFWI with full mesh connectivity (fm.) we observe
that it performs even closer to FWI TT confirming the imaging
results depicted in Fig. 2.

V. CONCLUSION

We explored the integration of Tikhonov and total variation
(TT) regularization for distributed subsurface imaging using
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Fig. 5: (a) NMSE and (b) SSIM performance of FD-ATCFWI and
FWI with and without TT for SNR = 20dB. For FD-ATCFWI
additionally full mesh (fm.) performance is shown.
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Fig. 3: Receiver-specific gradients after adapt step (7a) at
3Hz, 5Hz, 7Hz for FD-ATCFWI with TT.
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Fig. 4: Receiver-specific subsurface models after combine step (7b)
at 3Hz, 5Hz, 7Hz for FD-ATCFWI with TT.

adapt-then-combine full waveform inversion (FD-ATCFWI) in
the frequency domain. Incorporating TT regularization into the
distributed imaging framework significantly enhances imaging
performance. In addition to reducing noise artifacts, this
approach yields sharper anomaly contours, improving overall
image clarity. We demonstrated that FD-ATCFWI with TT reg-
ularization achieves imaging quality comparable to centralized
full waveform inversion (FWI) while remaining independent
of receiver locations. These findings highlight FD-ATCFWI as
a promising method for cooperative subsurface exploration in
multi-agent networks.
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