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Abstract—Ground Penetrating Radar (GPR) has been widely
studied as a tool for extracting soil parameters relevant to agri-
culture and horticulture. When combined with Machine Learning
(ML) methods, air-coupled Stepped Frequency Continuous Wave
Ground Penetrating Radar (SFCW GPR) measurements could
offer a cost-effective way to obtain depth-resolved soil data. As a
first step of our study in this direction, we conducted an extensive
field survey using a tractor-mounted air-coupled SFCW GPR
instrument. Leveraging ML-based data processing, we evaluate
the GPR instrument’s ability by predicting the apparent electrical
conductivity (ECaR) measured by a co-recorded Electromagnetic
Induction (EMI) instrument. The large-scale field measurement
campaign with 3472 co-registered and geo-located GPR and
EMI data samples distributed over approximately 6600 square
meters was performed on a golf course. This terrain offers high
surface homogeneity but also presents the challenge of subtle soil
parameter variations. Based on the results, we discuss challenges
in this multi-sensor regression setting and propose the use of the
nugget-to-sill ratio as a performance metric for evaluating ML
models in agricultural field survey applications.

Index Terms—Stepped frequency ground penetrating radar,
Electromagnetic induction, Machine learning, Soil analysis.

I. INTRODUCTION

Accurate soil information is crucial for effective land
management, from resource-efficient agri- and horticulture to
hydrological hazard mitigation [1]. Depending on the spatio-
temporal scale and accuracy requirements for soil information,
different measurement methods are in use today. At the local
level, (networks of) sensors provide direct, quasi instantaneous
measurements of soil parameters, including depth-resolving
measurements [2], whereas at large scales, satellite-based
systems with longer revisit times have been employed [3]. As
the focus of this paper, tractor-mounted instruments offer a
resource-efficient solution for real-time soil data collection,
enabling to directly determine process parameters in time
for subsequent (agri- and horticultural) equipment. The two
most established non-invasive soil sensing techniques are Elec-
tromagnetic Induction (EMI) and Ground Penetrating Radar
(GPR). Extensive research has explored how to relate both
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instrument readouts with soil parameters, including soil layer
thickness, soil density and soil water content (SWC) [4]-[9].

EMI instruments measure apparent electrical conductivity
(ECaR) in the surrounding soil using low-frequency (VLF)
electromagnetic waves. The probing frequency and the specific
coil configuration (spacing, orientation, and height) determine
the instrument sensitivity to subsurface layers at various depths
for different soil volumes [10], [11]. GPR, on the other hand,
provides depth-resolved soil sensing by transmitting pulsed
or frequency-stepped/modulated (VHF-UHF) radio frequency
waves to the ground [12]-[14]. The selection of TX and
RX antenna configurations depends on the target applica-
tion, including air-coupled vs. ground-coupled setups, antenna
orientation and monostatic, fixed-offset or variable-offset ar-
rangements. The choice of radar center frequency involves
a trade-off: high frequencies improve spatial resolution but
reduce penetration depth and increase sensitivity to surface
roughness. Stepped frequency continuous wave (SFCW) GPR,
recording over a series of dwell times at discrete frequency
steps, offers flexible control adjustable to the desired resolution
and ground conditions, enabling dynamic penetration depths, a
wide bandwidth and high signal-to-noise ratios (SNRs) [15]-
[17].

However, both EMI and GPR instruments require site-
specific calibration, since first principle approaches without
free parameters tend to yield precise results only for well-
defined laboratory settings. In the field, challenges arise due
to soil heterogeneity, vegetation, surface morphology, and in-
terference from nearby machinery. Recently, machine learning
(ML) has shown potential in enhancing GPR analysis and
soil parameter estimation. For example, deep neural networks
such as GPRNet [18] have been used for direct velocity
inversion, and have in further developments been applied to
depth-resolved SWC profiling [19] in the agricultural context.
ML-based methods have also optimized classical signal pro-
cessing features for soil moisture estimation in a field trial
under controlled moistening conditions with multiple geo-
physical instruments, including low-frequency GPR [20]. For
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more precise depth-resolved soil parameter estimation, high-
frequency SFCW radar combined with ML-based processing
has shown promising results based on data from multiple field
locations [21].

Although direct field sampling remains the gold standard
for soil parameter characterization, it is often impractical for
the large dataset acquisition needed to develop and validate
data-driven methods. In this paper, we thus adopt the data
acquisition approach from Jonard et al. [22] to record a large
field area with both EMI and GPR instruments simultaneously.
We aim to assess the feasibility of soil sensing with an air-
coupled SFCW GPR instrument and end-to-end ML methods,
using co-measured EMI data from the large-scale campaign!
as a proxy for relevant soil parameters.

II. MATERIALS AND METHODS
A. Sensor Specification and Field Campaign

For the field measurement, a tractor (7oro Reelmaster 5510)
was equipped with a Topsoil Mapper EMI instrument by
Geoprospectors and a newly developed SFCW GPR radar (see
Fig. 1). The system was integrated with a Real-Time Kine-
matic (RTK) corrected GPS (Stonex s10a) unit recording geo-
location and time stamping information at a rate of 1 Hz and
with a single point accuracy of 2-3 cm. The EMI instrument
operated with a horizontal coil alignment at a frequency of
9kHz and was mounted 20 cm above the ground, recording
raw ECaR values at a sampling rate of 5kHz. Here, raw
indicates that measurements included a baseline offset caused
by the presence of conductive material from the mower, which
was not removed by calibration in this study.

Fig. 1. Experimental setup of the air-coupled SFCW GPR with a fixed offset
and Vivaldi antennas (in yellow color) mounted directly behind the transversal
EMI instrument bar on a Toro Reelmaster 5510 tractor.

1) SFCW GPR: A single channel SFCW radar prototyped
by Geoprospectors is built as a bistatic, air-coupled system
with fixed-offset Vivaldi antennas for both transmission and
reception (detailed specifications in Table I).

2) Study Site and Data Source: The field campaign took
place on fairway 14 (FWY14) and fairway 16 (FWY16) of the
Fontana Golf Club, Austria (47°58°29”N, 16°18°25”E, ~220m
elevation) on 25.05.2023, following several days of dry, warm

IThe code of this paper is available at: https:/opensource.silicon-
austria.com/xuc/soil-analysis-machine-learning-stepped-frequency-gpr.

and windy weather. Data was collected along parallel lanes of
fairways (~1.5m spacing) with the tractor driving at speeds
of up to 16 km/h (see Fig. 2). The EMI, SFCW GPR and GPS
data were co-registered and re-sampled to match the SFCW
GPR sampling rate.

TABLE I
SFCW GPR SETUP PARAMETERS

Parameter Value

Frequency 1.3-2.9 GHz

Total sweep time 70 ms

Number of steps 400

Max. radar location sampling rate | 10 Hz

Antenna separation 60 cm at feed points

Ground clearance 15 cm

Angle to vertical 23° for both antennas

Antenna Gain ~7 dBI constant over bandwidth

B. Machine Learning

To evaluate the effectiveness of high-resolution air-coupled
SFCW GPR in soil sensing, the EMI instrument can serve as
a proxy for this purpose. The goal is to predict ECaR values
of EMI from SFCW GPR data using data-driven ML models.

1) Data Preprocessing: The field dataset, including radar
and ECaR measurements, is spatial and temporal filtered to
reduce instrument response variations caused by tractor turns
and velocity changes. Data samples associated to turning
paths, non-parallel sampling paths at the beginning and end of
recorded sequences, and extreme velocity values are removed.
The dataset is then prepared for the training and testing of
ML models, where radar readings at the 400 frequency steps
serve as inputs, and measured ECaR values are used as targets
at each geolocation. Outliers in the upper and lower 0.5% of
ECaR values are excluded, resulting in a total number of 3472
samples for both FWY14 and FWY 16 fairways. Each sample
has radar values, a target ECaR value, geographic coordinates,
and an estimated tractor speed. Radar data is normalized by
subtracting the mean value over all samples for each frequency
step, following a similar approach as [21]. Furthermore, a
transformation that yields zero mean and standard deviation of
one (for the target variables on the training dataset) is applied
to all target variables with the purpose to improve learning
during the regression task.

2) Regression Models and Performance Metrics: Regres-
sion models—Linear Regression (Linear), Random Forest
Regression (RFR) and k-nearest-neighbor-based regression
(KNR)—are employed to predict ECaR values from SFCW
GPR data, with Mean Squared Error (MSE) as the loss
function. Model performance is evaluated using MSE, Mean
Absolute Error (MAE), Pearson correlation coefficient () and
Nugget-to-Sill Ratio (NSR) derived from variograms [23].
Hyperparameters for RFR and KNR are optimized using grid
search in a (repeated) nested cross-validation (CV) setup [24]-
[26] to select the best architectures based on MSE. Models are
then trained and evaluated using repeated CV to ensure robust
error estimation. Performance metrics and their one-sigma
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Fig. 2. Information of the field campaign. a) Overview satellite map and b) detailed satellite imagery of the Fontana Golf Club, Austria. ¢) Velocity map of
the tractor on FWY 14 (left) and FWY 16 (right). d) Weather conditions in the week leading up to the date that measurements were taken.

confidence intervals are calculated based on 50 evaluations that
arise from the ten repetitions of the 5-fold cross validation.

III. RESULTS

Based on data from FWY14 and FWY16 described in
Sect. II-A2, two scenarios are analyzed in this study.

e Scenario 1: Only FWY16 data is used for both training
and testing (cf. Fig. 4 a)). Hyperparameters of RFR and
KNR are optimized on FWY16 data. Models are then
trained and tested using repeated 5-fold CV with ran-
domly split data (ignoring location information), resulting
in train and test samples being in close spatial proximity
to each other.

Scenario 2: FWY 14 data is used for training, and FWY16
data for testing (cf. Fig. 5 a)). Hyperparameters of RFR
and KNR models are optimized on FWY 14 data. Models
are then trained using repeated 5-fold CV with four folds
from FWY 14 and tested on the entire FWY16 dataset,
ensuring large spatial separation between train and test
samples.

In Scenario 1, heatmaps of predicted ECaR values (top
row plots of Fig. 4 b), ¢) and d)) exhibit similar geographic
patterns to the heatmap of measured ECaR values (Fig. 4a)),
but with a lower dynamic range. Scatter plots showing Pearson
correlation coefficient values between measured ECaR values
and model predictions reveal challenges in estimating extreme
ECaR values and highlight variances in prediction errors.
Although the Linear model has the highest fitted slope, RFR
shows the least variance in prediction error and achieves the
highest Pearson correlation coefficient (r = 0.425), making it
the best-performing model. This is also reflected in the error
histograms (bottom row plots of Fig. 4b), ¢) and d)), where
prediction errors of RFR result in a narrower distribution
compared to those of the baseline, which simply assumes the
average of ECaR values from the training data as a constant
prediction for the test data. As summarized in Table II, RFR
performs best overall, while the ranking of models depends
on the chosen error metric.

In Scenario 2, spatial separation between training and testing
data leads to a general decline in model performance indicated
by the reduced slopes in scatter plots (cf. Fig. 5). RFR still
achieves the highest Pearson correlation coefficient for ECaR
predictions, but ranks second to KNR in MAE and MSE,
with KNR being the only model outperforming the baseline
(performance metrics of models compared in Table II).
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Fig. 3. Variograms of Scenario 1 with training and testing on FWY16 a) and
Scenario 2 with training on FWY14 and testing on FWY16 b).

To further evaluate model performance, variograms of pre-
dicted ECaR values were calculated and fitted with spherical
covariance models (see Fig. 3 and Table III). Variograms
play an essential role in geostatistics, which quantify the
spatial variability of soil properties and are used for optimal
interpolation of measured data points [27]. Key parame-
ters—nugget (the (extrapolate) variance between samples at
vanishing distances), sill (the variance of samples at (infinitely)
large distances), range and NSR—were calculated. Since the
nugget value has a lower bound by the intrinsic variance of the
measurement/estimation method [28], NSR could be served
as a meaningful performance metric, which does not require
ground truth information for its evaluation. Lower NSR values
imply stronger spatial correlation and better model predictions.
The measured ECaR values exhibit the lowest NSR, followed
by RFR, KNR, and the Linear model. This ranking aligns
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TABLE II
SUMMARY OF PERFORMANCES OF RFR, LINEAR REGRESSION AND KNR MODELS FOR THE STUDIED TRAIN/TEST SCENARIOS.

Train and Test on FWY16 Train on FWY 14, Test on FWY16
RFR Linear KNR Baseline RFR Linear KNR Baseline
MAE | 2.1140.10 2.61+0.12 2.2240.10 | 2.3140.11 2.7240.06 3.5740.11 2.60+0.03 2.70+0.02
MSE | 8.10+0.86 | 12.15+1.92 | 8.93+0.88 | 9.94+1.07 | 11.9940.33 | 21.66+1.38 | 10.85+0.18 | 11.23+0.09
r 0.4340.06 0.3340.04 | 0.32£0.05 n.a. 0.18+0.02 0.08 £ 0.02 0.11£0.02 n.a.
TABLE III

VARIOGRAM PARAMETERS EXTRACTED FROM SPHERICAL FITS TO THE MODEL PREDICTIONS AND GROUND TRUTH VARIOGRAMS IN FIG. 3. THE
NUGGET-TO-SILL RATIO (NSR) CORRELATES WITH PERFORMANCE METRICS IN TABLE II.

a)

Distance [m]

Train and Test on FWY16 Train on FWY 14, Test on FWY 16 Ground Truth FWY16
RFR Linear KNR RFR Linear KNR
Range 17.624+0.20 | 18.18£1.09 | 19.09£0.31 | 26.10+1.29 | 17.41£2.30 | 21.034 1.42 15.82
Nugget | 0.6740.04 5.93+0.57 0.5010.02 1.83+0.26 11.35+1.06 0.54+0.05 1.51
Sill 1.7840.04 7.9640.92 1.134£0.02 3.88+0.47 13.00+1.40 0.8140.07 9.71
NSR 0.38+0.02 0.7540.02 0.4440.01 0.4740.03 0.8740.04 0.664-0.02 0.16
Measurements b) RFR c) Linear d) KNR
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Fig. 4. Results of predicted ECaR values from SFCW GPR data in Scenario 1. A geo-randomized five-fold cross-validation is applied to measurements of
FWY16 with measured ECaR values plotted in heatmap a). Results of RFR, Linear regression and KNR models are shown in b)-d). The top row presents
model predictions in heatmaps and scatter plots between measured ECaR values and predictions (with linear fit and Pearson correlation coefficient ), while
the bottom row displays model prediction errors in heatmaps and histograms. The histograms of baseline prediction errors represent from a uniform prediction
using the mean of ECaR values of a training set.
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Fig. 5. Results of predicted ECaR values from SFCW GPR data in Scenario 2. Models are trained on FWY14 and tested on FWY16 with measured ECaR
values plotted in heatmap a). Results for RFR b), Linear regression c¢), and KNR d) follow the description in Fig. 4.

with the Pearson correlation coefficient and correlates well
with MAE and MSE (cf. Table II and Table II) confirming
the hypothesis that NSR is a meaningful performance metric.

IV. CONCLUSION

In this paper, we explored the potential and limitations
of using end-to-end ML techniques for soil analysis with

high-resolution air-coupled SFCW GPR measurements. Unlike
previous studies [29] using sensor fusion and geostatistical
methods to compare EMI and GPR and to delineate homoge-
neous zones in the field, our data-driven ML approach does
not rely on domain-specific expert knowledge for calibration
and allows for quantitative performance assessments. In this
context, the nugget-to-sill ratio, which correlates with several
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standard ML performance metrics, has found to be a promising
indicator for model performance, which does not require
ground truth information.

To establish SFCW GPR using ML-based processing as a
geophysical tool for soil analysis suitable to precision farming,
more application-specific datasets for supervised learning are
needed. Multi-sensor field campaigns, such as the one reported
here, are important to collect the large-scale labelled measure-
ments needed for new instruments with manageable effort. The
integration of additional sensors such as height sensors and
optical cameras could enable the identification of undesired
instrument sensitivities, including to driving conditions, sur-
face morphology and vegetation. Incorporating remote sensing
data [30], including UAV-based measurements [31], could
enhance data availability to cover a larger variety of soil types
and conditions for the further development of methods.
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