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Abstract—In this paper, we propose a Sliding Window 2-Stage
Para-Hermitian Eigenvalue Decomposition (PhEVD) algorithm
for extracting the scattering amplitudes of a scattered radio
field from a high-dimensional and multichannel, time-varying
Wi-Fi Channel State Information (CSI) data in a multi-antenna
setup. The algorithm is designed to address the computational
challenges associated with processing large, high-dimensional
and multichannel Wi-Fi CSI data. We evaluate the proposed
method on real-world Wi-Fi Channel State Information (CSI)
data collected in an indoor environment, considering seven
distinct scenarios ranging from an empty room to a room with
up to six people. The extracted scattering amplitudes are used
to classify these scenarios using a fine-tuned Gaussian Support
Vector Machine (SVM). Our experimental results demonstrate
that the proposed 2-Stage PhEVD algorithm outperforms state-
of-the-art feature extraction methods, such as Reconstruction
Independent Component Analysis (RICA) and sparse filtering,
in terms of classification accuracy of the scattered radio field.
This work highlights the potential of the proposed approach
for device-free sensing, non-intrusive crowd counting and other
applications in indoor sensing.

Index Terms—PhEVD, scattering amplitude, scattered radio
field , channel frequency response.

I. INTRODUCTION

The rapid advancement of wireless communication tech-
nologies has opened new avenues for non-contact sensing
applications [1], particularly in indoor environments. Among
these, indoor crowd counting [2] and analytics have emerged
as critical tasks for various applications, including security,
retail, and smart building management. Traditional methods
for crowd counting often rely on cameras, which can be
intrusive and raise privacy concerns. In contrast, device-free
sensing using Wi-Fi signals offers a non-intrusive and privacy-
preserving alternative. By leveraging the pervasiveness of Wi-
Fi infrastructure, it is possible to infer the presence and
movement of people within an environment based on human-
induced scattering of these Wi-Fi radio waves.

Contribution. This paper presents a novel approach for
indoor crowd counting by analyzing the scattering amplitudes
of the scattered radio field, captured through high-dimensional
and multichannel time-varying Wi-Fi Channel State Infor-
mation (CSI) data, considering a multi-antenna setup. We

propose a two-stage Para-Hermitian Eigenvalue Decomposi-
tion (PhEVD) algorithm, termed the Sliding Window 2-Stage
PhEVD, to extract the scattering amplitudes of the radio
field. The algorithm is specifically designed to address the
computational challenges associated with processing large-
scale, multichannel Wi-Fi radio signals.

The proposed method is tested on real-world data collected
from a bistatic Wi-Fi-based sensing system in an indoor
environment. Seven different scenarios are considered, ranging
from an empty room to a room with up to six people.
The scattering amplitudes extracted by the 2-Stage PhEVD
are then used to classify these scenarios using a fine-tuned
Gaussian Support Vector Machine (SVM). The performance
of our algorithm is compared against state-of-the-art feature
extraction algorithms.

The remainder of this paper is organized as follows: Section
II introduces the signal and system model, detailing the prop-
agation of Wi-Fi signals in an indoor environment with static
and dynamic paths. Section III describes the Sliding Window
2-Stage PhEVD algorithm, including its mathematical formu-
lation and computational advantages. Section IV presents the
experimental setup and results, highlighting the accuracy of
the proposed method in crowd counting. Finally, Section V
concludes the paper, summarizing the key contributions and
potential applications of the proposed approach.

Notation. The set of natural, real, and complex-valued num-
bers are denoted by N, R, and C respectively. Additionally,
scalars are denoted as italic letters (H, . . . , α,Γ, . . . ), column
vectors as lower-case bold-face letters (d,v, , . . . ), matrices
as bold-face capitals (H,G, . . . ), and tensors are written as
bold-face calligraphic letters (D,H, . . . ). Furthermore, (·)†
represents the Hermitian transpose, and diag(·) extracts the
diagonal elements of a matrix.

II. SIGNAL AND SYSTEM MODEL

Consider the bistatic Wi-Fi-based non-contact sensing sys-
tem shown in Fig. 1, where the radio signals transmitted by a
Wi-Fi transmitter arrive at a separate Wi-Fi receiver through
multiple paths induced by scattering from objects and human
targets in the indoor environment.
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Fig. 1. Scenario of human targets and inanimate objects in an environment
scattering Wi-Fi radio waves.

Now, consider a broadband Wi-Fi signal that propagates
through a static path such as the Line-of-sight (LoS) path
from transmitter to receiver. The single tone transmitted signal
can be written as X(f, t) = α(t)ej2πft at time t for every
frequency f [3]. Likewise, the receive signal through the static
path is given by Y (f, t) = α′(t)ej2πf(t−τs), where τs = ls/c
is the time delay on the static path of length ls, α′(t) is the
attenuation signal. The transfer function of this static path is
given by

Hs(f, t) =
Y (f, t)

X(f, t)
=

α′(t)ej2πf(t−τs)

α(t)ej2πft
= Γ(t)e−j2πfτs , ∀ f

(1)
where Γ(t) = α′(t)/α(t) is the amplitude of the transfer
function. For moving human targets in the indoor environment,
there is a frequent perturbation of the radio field, this causes
regular changes in the reflected and diffracted paths, creating
a dynamic path [3]. The received signal through the dynamic
path is given by Yd(f, t) = α′′(t)ej2π(f+fD)(t−τd), for all f ,
where τd is the time delay on the dynamic path and fD is
the Doppler frequency shift [3] with fD ≪ f . The transfer
function for the dynamic path is given by

Hd(f, t) =
Yd(f, t)

X(f, t)
=

α′′(t)ej2π(f+fD)(t−τd)

α(t)ej2πft

∼= Γ′(t)ej2π(fDt−fτd), ∀ f, (2)

where Γ′(t) = α′′(t)/α(t).
Hence, for a given bistatic scenario, the overall transfer

function or channel frequency response is given by

H(f, t)=
∑

m∈PS

Γm(t)e−j2πfτ(m)
s

+
∑

n∈PD

Γ′
n(t)e

j2π(fDnt−fτ
(n)
d ), ∀ f

(3)

where Ps is the set of static paths and PD is the set of dynamic
paths.

For a multi-antenna system, (3) is the transfer function or
channel response between a transmit and a receive antenna
pair. Therefore, assuming NT transmit antennas and NR

receive antennas, we have that

Ha,b(f, t)=
∑

m∈PS

Γm(t)e−j2πfτ(m)
s

+
∑

n∈PD

Γ′
n(t)e

j2π(fDnt−fτ
(n)
d ), ∀ f

with a ∈ {1, . . . , NT } and b ∈ {1, . . . , NR}. Thus, for the
multi-antenna system, we have that

H(f, t) =


H1,1(f, t) · · · H1,NR

(f, t)
H2,1(f, t) · · · H2,NR

(f, t)
...

...
...

HNT ,1(f, t) · · · HNT ,NR
(f, t)

 , (4)

where H(f, t) ∈ CNT×NR , ∀ f .

III. THE SLIDING WINDOW 2-STAGE PARA-HERMITIAN
EIGENVALUE DECOMPOSITION (PHEVD)

Analysis of the scattered radio field across a range of
frequencies, using high-dimensional and multichannel Wi-Fi
radio signals from a multi-antenna system, can prove to be
particularly important in applications such as crowd analytics
and crowd counting. This is crucial for deriving actionable
insights, such as estimating crowd density, while operating in
a device-free and non-intrusive manner.

However, processing high-dimensional and multichannel
Wi-Fi radio signals from a multi-antenna system can pose a
significant computational burden on many numerical comput-
ing frameworks. This is especially true when mathematical
operations are applied to these Wi-Fi signals to extract impor-
tant features of the scattered radio field. In many cases, these
operations can cause the systems on which they are executed
to slow down or even crash.

Therefore, in this section, we describe our algorithm, called
the Sliding Window 2-Stage Para-Hermitian Eigenvalue De-
composition (PhEVD). This algorithm aids in analyzing the
scattered radio field across a range of frequencies at a given
time. Additionally, it significantly reduces the computational
burden on numerical computing frameworks.

It is worth noting that this algorithm works for the special
case where NT = NR.

A. Algorithm Description

Given 0 ≤ t ≤ Υ, the algorithm starts by time sloting the
time window into time slots of duration ∆t, for all Ha,b(f, t)
at a given frequency fk. Here, k = [1, . . . ,K], where k ∈ N
corresponds to the index of a given Wi-Fi sub-channel or
frequency bin. Thus, we can write t = i∆t+lΥs, where Υs is
the sampling time, l ∈ {0, . . . L−1} is the number of samples
in a given time slot, and i ∈ N, i = [1, . . . , I], indicates the
time slot number. Hence, the corresponding transfer function
for an arbitrary transmit and receive antenna pair can be
written as H

(i)
a,b(fk, lΥs) ∈ CL. Next, a Toeplitzification

operator [4] TL to collect all samples over time in a matrix,
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is applied to H
(i)
a,b(fk, lΥs) to embed it into the space TL of

Toeplitz matrices of CL×L, i.e.,

TL :

{
CL → TL ⊂ CL×L

H
(i)
a,b(fk, lΥs) 7→ TL

(
H

(i)
a,b(fk, lΥs)

)
:= H

(i)
a,b(fk)

(5)
where H

(i)
a,b(fk) ∈ CL×L is the resulting Toeplitz matrix.

Applying the Toeplitzification operator to all frequency bins
or sub-channels, i.e., {fk}Kk=1, for a given time slot of index i,
we obtain the tensor H(i)

a,b ∈ CL×L×K , for all antenna pairs.
The algorithm proceeds by taking the PhEVD [5] of all

the different combinations of transmit-receive antenna pairs
H(i)

a,b. The PhEVD which we shall be describing is obtained
via successive finite impulse response para-unitary (FIR PU)
transforms [6]. We start by defining G(ej2πf ) an L×L causal
FIR PU system of McMillan degree R [7], given by

G(ej2πf ) =

(
R∏

r=1

Vr(e
j2πf )

)
Q(ej2πf ) (7)

where Vr(e
j2πf ) is a degree-1 building block given by [6]

[7]

Vr(e
j2πf ) = IL − vrv

†
r + e−j2πfvrv

†
r, 1 ≤ r ≤ R (8)

where IL is L × L identity matrix, vr are L × 1 unit
vectors, and Q ∈ CL×L is a Para-unitary matrix, i.e.,
Q†(ej2πf )Q(ej2πf ) = IL. Hence, G†(ej2πf )G(ej2πf ) = IL.
Applying the degree-1 FIR PU transformation to H(i)

a,b we
obtain

D(i)
a,b ≜ G†H(i)

a,bG = Q†
(
V†H(i)

a,bV
)
Q, (9)

where (9) is done ∀ f , and G ∈ CL×L×K , Q ∈ CL×L×K ,
V ∈ RL×L×K are the tensors of G, Q and V respectively.
Here, (9) describes the transformation of the original system
H(i)

a,b into a new system D(i)
a,b using G. The goal is to diag-

onalize H(i)
a,b by iteratively applying FIR PU transformations,

increasing the Zeroth-Order Diagonal Energy (ZODE) [6] of
all H(i)

a,b. From (9), we define

P(i)
a,b ≜ V†H(i)V . (10)

Additionally, we define the zeroth-order term [6] of H(i)
a,b

as

H
(i)
a,b(f0) =

∫ K

1

H(i)
a,b df (11)

where H
(i)
a,b(f0) ∈ CL×L. Therefore, we define the zeroth-

order diagonal energy (ZODE) to be be the energy of the
diagonal components of the zeroth order term, expressed as

ΛHa,b
=
∥∥∥diag (H(i)

a,b(f0)
)∥∥∥2

2
. (12)

We can say that the zeroth-order term represents the average
behavior of the scattered radio field across all frequencies
and captures the dominant energy of the scattered radio field.
To increase the Zeroth-Order Diagonal Energy (ZODE), we
choose the vector v from the set of canonical basis vectors
(unit element vectors) in the L-dimensional vector space. This
choice ensures that v collects energy into the zeroth-order
term. Subsequently, the tensor Q is used to diagonalize the
zeroth-order term, redistributing the energy along the diagonal
elements.

The algorithm describes the iterative diagonalization of all
the entries of H(i)

a,b, and consequently, the ZODE of the
scattered radio field is progressively maximized. Below is the
step-by-step description of the algorithm.

Algorithm 1 Iterative diagonalization of H(i)
a,b

Require: H(i)
a,b

Ensure: D(i)
a,b

1: Initialization:
2: D(i)

a,b(0) ←Q†
0H

(i)
a,bQ0

3: r ← 1
4: Iterative diagonalization:
5: while r ≤ R do
6: Step 1: Compute Vr(e

j2πf )
7: Vr(e

j2πf )← IL − vrv
†
r + e−j2πfvrv

†
r

8: Construct the tensor V from the matrices
Vr(e

j2πfk) for f = fk and k = 1, . . . ,K
9: Step 2: Apply transformation

10: P(i)
a,b(r) ← V†

rH
(i)
a,b(r−1)Vr

11: Step 3: Diagonalize transformed system,
12: D(i)

a,b(r) ←Q†
rP

(i)
a,b(r)Qr

13: r ← r + 1
14: end while
15: Return:
16: return D(i)

a,b(R)

In the initialization phase of Algorithm 1, Q0(e
j2πf ) is

obtained such that

D
(i)
a,b(0)(e

j2πf0) = Q†
0(e

j2πf0)H
(i)
a,b(f0)Q0(e

j2πf0).

Subsequently, Qr(e
j2πf0) is computed from

D
(i)
a,b(r)(e

j2πf0) = Q†
r(e

j2πf0)P
(i)
a,b(r)(e

j2πf0)Qr(e
j2πf0).

Hence, D
(i)
a,b(r)(e

j2πf0) can be made diagonal by choosing

Qr(e
j2πf0) to be matrix of eigenvectors of H(i)

a,b(f0) for r = 0

and P
(i)
a,b(r)(e

j2πf0) for 1 ≤ r ≤ R. After performing the first
stage of the PhEVD algorithm, we obtain

D(i) =


D(i)

1,1 · · · D(i)
1,LNR

D(i)
2,1 · · · D(i)

2,LNR

...
...

...
D(i)

LNT ,1 · · · D(i)
LNT ,LNR

 (13)
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where D(i) ∈ CLNT×LNR×K . In the second stage, we first
select only the highest eigenvalues of all the the D(i)

a,b such we
obtain D̃(i) ∈ CNT×NR×K . Next, we take the cross spectral
density of D̃(i) given by

B(i) = D̃†(i)D̃(i), (14)

where B(i) ∈ CNT×NR×K . Similarly to stage 1, we itera-
tively diagonalize B(i) using algorithm 1, and again extract
only the most dominant eigenvalue, which we denote with
d(i) ∈ RK×1. The algorithm describing the second stage of
the proposed PhEVD algorithm is given below

Algorithm 2 Extraction of the scattering amplitudes across all
frequencies

Require: D(i) ∈ CLNT×LNR×K ▷ Input tensor
Ensure: d ∈ RK×1 ▷ Most dominant eigenvalues across

frequencies
1: Step 1: Select Highest Eigenvalues
2: D̃(i) ∈ CNT×NR×K ← SelectHighestEigenvalues(D(i))

▷ Extract highest eigenvalues
3: Step 2: Compute Cross Spectral Density
4: B(i) ← D̃†(i)D̃(i) ▷ Compute cross spectral density
5: Step 3: Diagonalize and Extract Dominant Eigenvalues
6: Apply Algorithm 1 to B(i) ▷ Iteratively diagonalize
7: d← ExtractMostDominantEigenvalues(B(i)) ▷ Extract

most dominant eigenvalues
8: Return:
9: return d(i) ∈ RK×1 ▷ Return dominant eigenvalue

The extracted d(i) describes the scattering amplitude of
the Wi-Fi radio signal over all frequencies for a given time
slot i. The 2-stage PhEVD is performed for all time slots of
the different transmit-receive antenna pairs, and the scattering
amplitudes are arranged in the matrix Sσ = [d

(1)
σ , . . . ,d

(I)
σ ].

Here, Sσ ∈ RK×I , and σ ∈ N indicates the label of the
scenario we are dealing with. For instance, σ = 0 corresponds
to an empty room scenario, and σ = 4 corresponds to a
scenario with 4 people in the room.

B. Classification of the scattering amplitudes extracted using
the 2-stage PhEVD

The final phase of the algorithm consists in applying a
classifier to the radio wave scattering amplitudes stored in
the matrix Sσ = [d

(1)
σ , . . . ,d

(I)
σ ], for crowd analytics in an

indoor environment, such as counting the number of people
in a given indoor setting. The classifier chosen in this paper
is a fine-tuned Gaussian Support Vector Machine (SVM), also
known as a Radial Basis Function (RBF) kernel SVM.

For better understanding, in Section IV, we report the
extracted scattering amplitude of a given time slot for 7 indoor
scenarios, ranging from an empty room to a room with up to
6 people, using our proposed algorithm.

IV. EXPERIMENTAL RESULTS

In our experiment, we utilized two AX200 Wi-Fi network
interface cards (NICs) to collect Channel State Information
(CSI) from scattered Wi-Fi radio signals in a room measuring
3×5.6×7.3 m3. One NIC was configured as a transmitter and
the other as a receiver, with each card equipped with two om-
nidirectional antennas, forming a 2×2 MIMO (Multiple-Input
Multiple-Output) system with each antenna elevated 1.5 meters
above ground level. The Wi-Fi signal operated at a center
frequency of 5.775 GHz with a bandwidth of 80 MHz, utilizing
245 sub-channels under the IEEE 802.11ac standard. CSI data
was collected using Picoscenes at a sampling frequency of
80 MHz. The experiment comprised seven distinct scenarios.
The initial scenario involved an indoor environment with no
human presence. Subsequent scenarios introduced one to six
individuals, with the primary activity being walking to enhance
the scattered radio field. For each scenario, measurements
were conducted over a duration of five minutes, yielding 5000
CSI samples for each sub-channel and each transmit-receive
antenna pair. To facilitate analysis, the 5000 CSI samples were
divided into 10 time slots (corresponding to I = 10), each
containing 500 CSI samples (equivalent to ∆t ≈ 30 s, and
Υ ≈ 60 ms). This time slotation was applied to each sub-
channel and transmit-receive antenna pair. Our proposed 2-
stage PhEVD algorithm, as described in Section III.A, was
then applied to extract the scattering amplitudes for each
scenario. The scattering amplitudes of the Wi-Fi radio signal
over all 245 frequencies (Wi-Fi sub channels ) of the system
for i = 5, for 7 scenarios, i.e., empty room, and one person
to 6 people in the room is shown in Fig. 2.
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Fig. 2. Scattering Amplitude over all frequencies ({fk}245k=1) for i = 5, and
for 7 scenarios.

In Fig. 2, it can be observed that the scattering amplitudes
extracted using the 2-stage PhEVD for the 7 scenarios—
ranging from an empty room to a room with 1 to 6 people—
each exhibit a distinct spectral signature. To corroborate this
observation, the RBF kernel SVM classifier was applied to
the scattering amplitudes extracted by the 2-stage PhEVD
algorithm for all time slots, with the goal of people counting
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in an indoor environment. The accuracy of our proposed
algorithm was compared against two state-of-the-art feature
extraction methods: Reconstruction Independent Component
Analysis (RICA) [8] and sparse filtering [9], both applied
to the same high-dimensional and multichannel CSI data, as
reported in Table I. It can be seen from the table that the 2-
stage PhEVD performs the best in distinguishing the scenarios
in the indoor environment based on the scattered radio field.

It is worth mentioning that RICA and sparse filtering are
considered state-of-the-art for small to medium-sized datasets,
as in our case. If the number of samples had been significantly
larger, we could have also considered using Artificial Neural
Networks for feature extraction [10] and as a replacement for
the RBF Kernel SVM [11].

TABLE I
COMPARISON OF PRE-PROCESSING ALGORITHMS FOR HUMAN TARGET

COUNTING IN AN INDOOR SETTING USING RBF KERNEL SVM AS A
CLASSIFIER.

Pre-Processing Algorithm Accuracy (%)
No processing 60.9
Sparse filtering [9] 66.6
RICA [8] 69.9
2-Stage PhEVD (this paper) 90.2

Moreover, the confusion matrix obtained for the RBF kernel
SVM applied to the scattering amplitudes obtained using the
2-stage PhEVD is shown in Fig. 3.
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Fig. 3. Confusion matrix for the 2-stage PhEVD, with TPR=True Positive
Rates, and FNR=False Negative Rates, the empty spaces are 0%.

The confusion matrix demonstrates that the scattering am-
plitudes extracted using the 2-Stage PhEVD algorithm is par-
ticularly effective for the classifier in distinguishing between
an empty room and rooms with people, and it also performs
well in identifying the correct number of people in most cases.
However, from the confusion matrix, it can be observed that
the True Positive Rate (TPR) for the empty room is the lowest
among all scenarios. The TPR of 70.2% for the empty room
can be explained by the fact that inanimate objects (such
as furniture, walls, doors, and other static structures) cause
static scattering of the Wi-Fi signals. This static scattering
contributes to the total scattered field, creating a baseline
level of signal perturbation even when no people are present.

When people are introduced into the room, their movements
cause dynamic scattering, which is superimposed on the static
scattering from inanimate objects. This poses a little challenge
for the classifier to distinguish the empty room from other
scenarios.

V. CONCLUSION

In this paper, we have shown that by using the slid-
ing window 2-stage PhEVD, we can extract the scattering
amplitude of a radio scattered field from high-dimensional
and multichannel Channel State Information (CSI) data, for
a multi-antenna setup. Additionally, the extracted scattering
amplitudes can be used in applications such as crowd analytics.
For future work, we intend to apply this approach to different
indoor environments of varying complexities.

REFERENCES

[1] N. Novello and A. M. Tonello, “Recurrent dqn for radio fingerprinting
with constrained measurements collection,” ICT Express, 2024.

[2] F. E. Ebong, N. Novello, and A. M. Tonello, “Human detection based
on learning and classification of radio scattering parameters and para-
hermitian eigenvalue decomposition,” in 2024 IEEE 35th International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pp. 1–6, 2024.

[3] K. Niu, X. Wang, F. Zhang, R. Zheng, Z. Yao, and D. Zhang, “Rethink-
ing doppler effect for accurate velocity estimation with commodity wifi
devices,” IEEE Journal on Selected Areas in Communications, vol. 40,
no. 7, pp. 2164–2178, 2022.

[4] M. Simeoni, A. Besson, P. Hurley, and M. Vetterli, “Cpgd: Cadzow
plug-and-play gradient descent for generalised fri,” IEEE Transactions
on Signal Processing, vol. 69, pp. 42–57, 2021.

[5] S. Weiss, J. Pestana, and I. K. Proudler, “On the existence and unique-
ness of the eigenvalue decomposition of a parahermitian matrix,” IEEE
Transactions on Signal Processing, vol. 66, no. 10, pp. 2659–2672, 2018.

[6] A. Tkacenko, “Approximate eigenvalue decomposition of para-hermitian
systems through successive fir paraunitary transformations,” in 2010
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 4074–4077, IEEE, 2010.

[7] P. Vaidyanathan, Multirate filter banks and wavelets. Prentice Hall,
1992.

[8] Q. Le, A. Karpenko, J. Ngiam, and A. Ng, “Ica with reconstruction
cost for efficient overcomplete feature learning,” Advances in neural
information processing systems, vol. 24, 2011.

[9] J. Ngiam, Z. Chen, S. Bhaskar, P. Koh, and A. Ng, “Sparse filtering,”
Advances in neural information processing systems, vol. 24, 2011.

[10] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction
and classification of hyperspectral images based on convolutional neural
networks,” IEEE transactions on geoscience and remote sensing, vol. 54,
no. 10, pp. 6232–6251, 2016.

[11] N. Novello and A. M. Tonello, “f -divergence based classification: Be-
yond the use of cross-entropy,” in Proceedings of the 41st International
Conference on Machine Learning, pp. 38448–38473, PMLR, 2024.

2366


