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Abstract—This paper proposes a method of precise micro-
Doppler analysis of vibrating targets in synthetic aperture radar
(SAR) imagery. The raw SAR data is first processed using
a modified backprojection approach to generate a time series
of the ground target before a sparse representation approach
using the orthogonal matching pursuit algorithm is used to
de-noise the data. By incorporating the actual pulse timings
from the SAR metadata during the dictionary construction,
the method effectively handles the variable pulse repetition
frequencies of modern SAR sensors. Experimental validation
with real spaceborne SAR data containing an oscillating corner
reflector demonstrates millimeter-level displacement accuracy,
confirming the efficacy of the proposed approach for precise
vibration measurement.

Index Terms—Synthetic Aperture Radar, micro-Doppler, Vi-
bration, Orthogonal Matching Pursuit, Sparse Representation

I. INTRODUCTION

Synthetic Aperture Radar (SAR) is a remote sensing tech-
nology that uses back-scattered radar signals to create high-
resolution images. SAR operates in the microwave spectrum,
which unlike optical sensors, allows it to capture images
regardless of weather or lighting conditions. SAR achieves
a high along-track resolution using the motion of the radar
platform, such as an aircraft or satellite, to synthesize a long
virtual antenna, with the high cross-range resolution being
dependent on the high bandwidth of the transmitted pulses.

There is an ever-increasing availability of such high-
resolution, spaceborne SAR images and this opens the door
for new methods of exploiting SAR imagery. Among these is
the analysis of the micro-Doppler effect.

Micro-Doppler analysis extends the classical Doppler effect
by accounting for time-varying frequency modulations induced
by target micro-motions, such as vibrations, rotations, or
oscillations [1]. Sources of such micro-motion can range from
anything from the rotating blades of a helicopter or wind
turbine all the way down to the swinging arms and legs of
a person walking. Specifically for SAR there is significant
interest in this field with a multitude of example use cases
such as enhanced target characterization [2], structural health
monitoring [3] and maritime domain awareness [4].

Some previous techniques utilizing the target’s phase history
have been proposed with some success. The authors in [5] and
[6] used various forms of time-frequency analysis, such as the
short-time Fourier transform and the Wigner-Ville distribution
to characterize the vibrational periods of targets. While these
techniques can be accurate, they require interpretation of
the time-frequency distributions. An algorithm that returns a
numerical solution was detailed in [7], which uses the discrete
fractional Fourier transform to estimate target accelerations in
a sliding window across the phase history. A similar approach
that used the high-order ambiguity function was proposed in
[8] with application to infrastructure monitoring.

In this paper, an approach to characterize target vibrations
using SAR is proposed which makes use of a modified
backprojection algorithm (BPA) and parametric sparse repre-
sentation. The modified BPA is an adapted focusing procedure
that is used here to generate the signal of interest that contains
the target vibration information. This signal is then processed
using a parametric sparse representation method, using the
orthogonal matching pursuit (OMP) [9], to reduce noise and
enhance the extracted features. Both sparse and parametric
sparse representation techniques have previously been used
for improving micro-Doppler signature classification with real
aperture radars, as seen in [10]–[12]. However, to the best
of the authors knowledge, this is the first instance of these
techniques being used for micro-Doppler analysis in SAR.

A parametric sparse representation technique has been cho-
sen here for two main reasons. First, it can work around
some limitations, such as the restricted isometry property,
typically required in standard compressed sensing frameworks.
Secondly, by utilizing domain knowledge in the construction
of the parametric dictionary, it can more effectively capture the
key features of the underlying signal. This results in improved
reconstruction accuracy and robustness to noise.

The remainder of the paper is organized as follows: Section
II introduces the modified BPA approach as well as the
signal model used in the sparse representation, Section III-A
describes parametric sparse representation as well as the OMP
algorithm. Section IV shows the results on real experimental
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SAR data with sections V and VI providing the discussion and
conclusion to this paper.

II. BACKGROUND

A. Modified Backprojection Algorithm

The modified backprojection algorithm was recently intro-
duced as an accurate way to extract micro-motion extraction
information from SAR [13]. This has been verified on simu-
lated data and on real spaceborne SAR data.

To briefly summarize the modification, the structure of
the standard BPA remains intact, with only the coherent
summation step being changed. Instead it is replaced by a
concatenation, which changes the output from a 2D image to
a 3D data cube where the new third dimension corresponds
to time. By selecting an appropriate target pixel, details of
the target’s movement can be inferred from changes in the
complex value of the pixel.

The key advantage of using the modified BPA to gener-
ate the signal of interest this way is its ability to achieve
localized micro-Doppler extraction in both time and space
while preserving image formation capabilities - full image
formation can be accomplished by simply summing along
the third dimension. The limitation of this approach is the
significant memory required to store the resulting data cube.
This could be mitigated by leveraging any a priori target
information to create only the necessary image size and by
selectively using pulses that correspond to moments when the
target exhibits micro-motions. The computational time also
remains comparable to that of the standard BPA.

B. Micro-Doppler Signal Model

The (real aperture) radar echoes from a steady-state,
constant-frequency vibrating target can be modeled as a si-
nusoidally frequency-modulated signal [1] (Chapter 2, Eq.
(2.75)):

sR(t) = ρ exp

{
j
4π

λ
R0

}
exp {j(2πft+B sinωvt)} (1)

where ρ is the complex reflectivity of the target, λ is the carrier
wavelength, R0 is the distance from the target to the radar, f is
the carrier frequency, B is a coefficient incorporating vibration
displacement and the azimuth and elevation angles between the
radar and target, t is slow-time and ωv is the angular vibration
frequency.

This model can be adapted for the returned signal of interest
from the modified BPA as in Eq. (2). The assumptions being
that the spatial resolution of the SAR image is sufficiently high
so that the target completely occupies the resolution cell or is
otherwise the dominant scatterer.

y(t) = ρ(t) ∗ exp(jamDsin(ϕmD + 2πfmDt)) (2)

Here, ρ(t) now varies over time to account for the more
pronounced time-varying nature of the backscattered signal in
a SAR system. The parameter amD is the amplitude of the
sinusoidal frequency modulation due to the target vibration

(encompassing vibration displacement, carrier wavelength and
elevation-angle dependence), ϕmD is an initial phase stemming
from any instantaneous displacement of the vibrating target,
and fmD is the vibration frequency of the target. Finally, the
parameter, t corresponds to the pulse repetition frequency
(PRF) sampling - also know as slow-time - in the SAR
acquisition.

III. METHOD

A. Parametric Sparse Representation

The Orthogonal Matching Pursuit (OMP) algorithm is one
of many methods originating from the field of compressed
sensing. Although often used to recover signals from a limited
number of measurements - sometimes even surpassing the
Nyquist limit [14] by exploiting signal sparsity - OMP and
related algorithms are also useful for sparse representation. In
sparse representation, the goal is to represent a measurement
vector y ∈ Cm using only a small subset of columns from an
overcomplete dictionary Φ ∈ Cm×n, where m ≪ n.

Specifically, we seek a sparse coefficient vector x ∈ Cn

satisfying
y ≈ Φx+ e, (3)

where e is a noise vector and x contains only a small number
of non-zero elements. Formally, we can write

x̂ = argmin
x

∥x∥0 s.t. ∥y −Φx∥22 ≤ ϵ, (4)

with ∥·∥0 and ∥·∥2 denoting the ℓ0- and ℓ2-norms, respectively,
and ϵ a chosen error threshold. Because exact ℓ0-minimization
is an NP-hard problem, greedy algorithms such as OMP [9]
iteratively select dictionary columns most correlated with the
current residual, refining the solution at each step.

Parametric sparse representation extends this idea by build-
ing a dictionary Φ that depends on domain-specific parameters
of the signal. In this work, we discretize the micro-Doppler
frequency, phase, and amplitude of the model in Eq. (2) into
P×Q×R values. These parameter sets are denoted as follows:

fmD ∈
{
fmD1 , . . . , fmDp , . . . , fmDP

}
, (5)

ϕmD ∈
{
ϕmD1 , . . . , ϕmDq , . . . , ϕmDQ

}
, (6)

amD ∈
{
amD1

, . . . , amDr
, . . . , amDR

}
. (7)

Here, p indexes the micro-Doppler frequency values, q
indexes the phase values, and r indexes the amplitude values.
Each triplet

(
fmDp

, ϕmDq
, amDr

)
thus corresponds to one

column (atom) in the resulting parametric dictionary which
captures a range of possible micro-Doppler parameters. Thus
the dictionary will contain P × Q × R or n columns. The
OMP algorithm then attempts to pick only those columns most
relevant to reconstructing the measurement vector y.

The OMP algorithm itself was chosen due to its compu-
tational speed, more advanced sparse solvers should theoret-
ically converge on the same sparse solution but with higher
computational load. As such their analysis is left open to future
work.
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B. Application to Real Data With Variable PRF

One of the advantages of using parametric sparse represen-
tation is that when building the dictionary the timings of a vari-
able PRF can be naturally built into each entry. A variable PRF
in SAR optimizes imaging performance by reducing range
and Doppler ambiguities and adapting to different observation
geometries. If we were to assume a linearly spaced t we would
build an ill fitting dictionary and so below details how the
actual PRF is obtained.

The raw SAR data was provided in the compensated phase
history data (CPHD) format. The CPHD file contains the data
for each received radar pulse in the acquisition, metadata for
each individual pulse and metadata for the acquisition as a
whole. Among the per pulse metadata is the transmission and
receive time of each pulse given as a vector. More specifically
they are the ‘transmit time for the center of the transmitted
pulse relative to the transmit platform collection start time’
and the ‘receive time for the center of the echo from the scene
reference point relative to the transmit platform collection start
time’ [15]. The difference between adjacent elements of the
transmit vector corresponds to the pulse repetition interval
(PRI), and we can take the reciprocal of the PRI to get the
instantaneous PRF as a function of pulse number. With this
process the variable nature of the PRF is highlighted, as shown
in Fig. 1.

Fig. 1: Visualization of instantaneous PRF against pulse num-
ber

We can then utilize the transmit and receive times from the
metadata to more accurately construct the dictionary. The time
the pulse interacted with the ground, denoted tground, can be
found by:

tground = ttransmit +
treceive − ttransmit

2
(8)

tground can then be used in place of t during dictionary
construction. Finally, to further improve numerical stability,
we normalize the measurement signal as:

y(t) =
y(t)

max |y(t)|
(9)

This helps to mitigate scaling discrepancies during param-
eter estimation, leading to a more robust sparse recovery
process. Each column of the dictionary already has the unit
norm, which ensures that the atom-selection step in OMP
reflects correlation rather than amplitude differences across
columns.

IV. EXPERIMENTAL RESULTS ON REAL DATA

This section details the experimental results obtained using
real data acquired by Capella Space over Trento, Italy in
December 2023. During the acquisition, a corner reflector was
placed in an open field on a platform whose oscillation was
controlled by a signal generator and linear servo. Synchronous
ground truth was obtained using a linear variable differential
transformer (LVDT) to measure the real-time displacement of
the corner reflector. The platform was set to oscillate at 2 Hz
with a displacement amplitude of 15 mm. Figure 2 shows the
corner reflector as well as the corresponding section of the
SAR image.

(a)

Fig. 2: (a) The apparatus used for experiments. (b) SAR image
section showing the oscillating corner reflector. Image courtesy
of Capella Space.
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A. Time-Frequency Comparison

The micro-Doppler parameter space was discretized as
follows, with candidate values taking the range:

fmD = {0.1, 0.2, 0.3, . . . , 3} , (10)

ϕmD =

{
0,

1π

20
,
2π

20
, . . . ,

19π

20

}
, (11)

amD = {0.1, 0.2, 0.3, . . . , 7} (12)

To ensure that the measurement vector is sufficiently smaller
than the dictionary length n, not all the samples returned from
the modified BPA are used. The samples are also first summed
in ‘batches’ of 50 to increase the signal-to-noise ratio (SNR)
[13]. As a result, the final measurement vector has length
m = 400, thus satisfying the requirement m ≪ n. Applying
the OMP algorithm, the returned residual from the dictionary
is sufficiently close after only one iteration, returning the
parameters fmD = 2, amD = 5.1, and ϕmD = 9π

10 .
Taking advantage of our prior knowledge, we can use these

micro-Doppler parameters to generate a denoised signal for
the full duration of the aperture. It is worth noting that this is
not a significantly limiting factor of this approach: if there is
no a priori knowledge the OMP could simply be applied on a
non-overlapping sliding window through the signal of interest
though this would increase the run time.

To give a good visual understanding of the output of this
process, a spectrogram of the uniformly resampled signal
returned from the modified BPA has been shown alongside
the reconstructed signal using parameters returned from the
OMP (this uses the same sample spacing as the resampled
signal) in Fig. 3.

B. Displacement Analysis

To further validate the micro-Doppler characterization, we
compare the phase of the sparsely represented signal to the
ground-truth measurements recorded by the LVDT. Following
the approach in [13], the unwrapped, instantaneous phase of
the sparsely represented signal can be related to the line-of-
sight (LOS) displacement, dLOS, using the wavelength λ of the
center frequency of the SAR pulses. Specifically,

d =
∆ϕλ

4π
(13)

where ∆ϕ is the instantaneous phase.
Applying (13) to each time sample reconstructs a time series

of the LOS displacement for the target pixel of interest. To
compare fairly with the ground truth, we project this LOS
displacement into the vertical plane via:

dvertical =
dLOS

sin(γ)
, (14)

where dvertical is the vertical displacement, dLOS is the line-
of-sight displacement, and γ is the grazing angle of the SAR
acquisition.

Figure 4 compares the reconstructed displacement using
OMP with the LVDT measurements. Although the LVDT
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Fig. 3: (a) Spectrogram of resampled signal returned from
backprojection algorithm (b) Spectrogram of signal generated
using parameters returned from the OMP.

Fig. 4: Comparison of the OMP recovered signal and the
ground-truth LVDT measurements.
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signal is not perfectly sinusoidal - likely due to small mechan-
ical inconsistencies in the oscillating platform - the sinusoidal
model in (2) still provides more than sufficient accuracy for
target characterization.

The overall displacement error remains very small, with the
maximum error of any time instant being 1.27 mm (8.6%)
and the mean absolute error being 0.0013 mm. This outcome
is a testament to the high-quality data provided, as well as the
precision in the processing needed for this level of accuracy.
Of course, this result benefits from the fact that the corner
reflector used provides a very strong back-scatter. If higher
fidelity were required in future, the signal model could be
refined to better capture non-ideal oscillations or other motion
artifacts.

V. DISCUSSION

Although the proposed approach demonstrates very promis-
ing results for vibration analysis in SAR, several avenues
exist for further investigation. Firstly, additional trials will
be conducted as part of our larger acquisition campaign to
validate the robustness of this method under different condi-
tions, sensor platforms, and target types. While the current
experiments benefited from prior knowledge of the target’s
approximate vibration parameters, it would be useful to apply
this approach in scenarios where such knowledge is limited or
by doing blind trials.

Another natural extension of this work would be to expand
the single sinusoid model to accommodate multi-component
signals. This would allow for analysis of multiple vibrational
modes or more complex target dynamics which is of particular
interest for real world targets, such as idling vehicles or
vessels. By incorporating a more flexible dictionary design or
by requiring multiple iterations of the OMP, the method could
capture multiple frequencies and amplitudes to better match
non-ideal or multi-mode oscillations. In fact, this capability
underpinned the choice of OMP over a conventional least-
squares fit in this work.

A final comment is that of the ability to incorporate the
precise pulse timings from the SAR metadata. This was crucial
in handling the non-uniform pulse repetition frequencies.
Although a uniform re-sampling strategy is sufficient for
visualization in many cases, significant gaps between pulses
would introduce clipping effects that compromise accuracy.
Directly incorporating the true pulse timing into the dictionary
construction avoids this issue and allows for accurate micro-
Doppler extraction.

VI. CONCLUSION

This paper proposed a parametric sparse representation
approach for analyzing target vibrations in SAR imagery. By
first applying a modified backprojection algorithm to generate
a time-domain signal, and then using the orthogonal matching
pursuit algorithm, the method accurately estimated vibrational
displacements even under variable pulse repetition frequencies.
Experimental validation on real spaceborne SAR data demon-
strated millimeter-level accuracy compared to ground-truth

LVDT measurements. The approach’s flexibility in dictionary
construction, especially incorporating actual pulse timings,
makes it well-suited to modern SAR systems. Future exten-
sions include accommodating multi-component vibrations and
investigating further optimizations for large-scale data.
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