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Abstract—This paper introduces a novel approach called Con-
trastive Learning-based Deep Convolutional Transform Learning
(CL-DCTL) for multi-sensor data fusion. The proposed frame-
work addresses challenges posed by availability of data; further
with limited labeled instances, for sensor fusion tasks. The
proposed CL-DCTL integrates contrastive learning (CL) with
deep convolutional transform learning (DCTL) to jointly optimize
and extract robust features from multi-modal sensor data in an
unsupervised setting. By leveraging DCTL encoders, the method
ensures diversity in learned filters while reducing the number
of trainable parameters, thus mitigating overfitting issues with
limited data. Experimental results on two datasets from different
domains show that the proposed CL-DCTL outperforms state-
of-the-art methods, providing higher classification accuracy even
with only 10% labeled data using an external classifier.

Index Terms—Multi-sensor fusion, Deep convolutional trans-
form learning, Contrastive learning, Representation learning.

I. INTRODUCTION

Single-sensor systems often face challenges associated with
data uncertainties and inability to capture complex envi-
ronmental conditions, leading to sub-optimal performance.
These limitations are addressed through multi-modal data
fusion, where information from multiple sensors with differing
physical characteristics is combined to improve accuracy and
reliability [1]. This fusion enables a broader perspective on
the environment and improves inferencing capabilities. As a
result, multi-modal fusion is widely applied in areas such as
computer vision, industrial manufacturing, medical diagnosis
and robotics [2]–[4]. Of late, many applications utilize ma-
chine learning, particularly techniques based on Deep Neural
Networks (DNNs) [2], [3] for performing fusion. While DNNs
are effective at identifying complex patterns in data, their
requirement for large labeled datasets and heavy computational
resources limits their scalability [5]. Since manual labeling is
both costly and time-consuming, these techniques are rendered
unsuitable for real-world applications where the data is mostly
unlabeled or partially labeled. The scenario becomes more
challenging when the access to data itself is limited.

To address the challenge of limited/partially labeled data,
semi-supervised learning techniques have been extensively
studied with a recent focus on Contrastive Learning (CL) [6]–
[8]. CL has emerged as a powerful self-supervised technique
that learns representations by maximizing similarity within
positive pairs —samples derived from the same data instance,

while minimizing similarity between negative pairs—samples
drawn from different data instances. While some CL based
methods use labels information to aid in representation learn-
ing [6], [7], others learn representations in a fully unsupervised
setting [9]–[14]. The rich representations learned from these
techniques provides improved classification performance even
when the classifier is trained on limited labeled data. However,
most existing CL techniques are designed for single-sensor
data [9]–[13], where different data augmentations (like, jitter,
permutation etc.) are employed to generate different views
of the original sample. The encoder network is then trained
to align these views, making them invariant to the applied
augmentations.

Single-sensor-based contrastive learning (CL) techniques
face challenges with multimodal data due to their inabil-
ity to effectively capture the heterogeneity that arises from
samples generated by different sensor types [14]. Addressing
this heterogeneity requires a more specialized approach than
the single encoder network used in typical single-sensor CL
methods. To address this, the techniques proposed in [14]–
[16] employ modality-specific encoders for each sensor. The
loss function in [14], [15] is designed to capture both consis-
tent and complementary information across different modali-
ties. The work in [16] proposes cross-modal self-supervised
learning that incorporates latent masking in the intermedi-
ate embeddings produced by modality-specific encoders and
subsequently create global embeddings using a cross-modal
aggregator. However, the encoder architectures used in all
these techniques [14]–[16] are based on Convolutional Neural
Networks (CNNs), where the learned filters are not guaranteed
to be unique, resulting in redundant filters to be learned,
thereby increasing the number of trainable parameters. Given
the limited data scenario, this may result in overfitting and
hence, there is a need for learning distinct/unique filters for
learning the fused representations for effective performance.

In this work, we propose a novel framework called Con-
trastive Learning based Deep Convolutional Transform Learn-
ing (CL-DCTL), which integrates CL with the Deep Convo-
lutional Transform Learning (DCTL) [17] approach to effi-
ciently extract features from limited multimodal data. This
method uses a joint optimization formulation to learn robust
representation from multi-modal data in a self-supervised/
unsupervised manner. The DCTL framework learns sensor-
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Fig. 1. (a) Block Diagram of the proposed CL-DCTL method for Fusion, (b) Classification using the learned DCTL encoder network.

specific encoders while ensuring diversity in the learned filters,
resulting in fewer learnable parameters. On the other hand, CL
maximizes mutual information between representations from
sensor-specific DCTL encoders. To evaluate the multi-modal
representation learning capability of the proposed framework,
the features from the learned sensor-specific encoders are
concatenated to study the performance of the classifier trained
with different percentage of labeled data. Experimental results
obtained with two datasets from different domains demonstrate
the superior performance of the proposed method compared to
state-of-the art methods, even with as low as 10% labeled data.

The paper is organized in the following manner: Sec-
tion II provides background on the Convolutional Transform
Learning (CTL) method, and Section III introduces the pro-
posed CL-DCTL method for multi-sensor fusion. Section IV
provides the experimental details, comparisons, and results.
Finally, Section V concludes the paper.

II. BACKGROUND ON CONVOLUTIONAL TRANSFORM
LEARNING (CTL)

In CTL, a set of M independent convolutional filters
{tm}Mm=1 are learned from the data samples {sk}Kk=1 with K
measurements of length d, in an unsupervised manner. The
learned convolutional filters extract features or coefficients
{xm,k}Mm=1 using the following standard CTL formulation
[18]:

min
tm,xm,k

1

2

K∑
k=1

M∑
m=1

(∥(tm ∗ sk − xm,k∥2F + ϕ(xm,k))

+ ϵ∥T ∥2F − µ log det(T )

(1)

where ∗ denotes the convolution operation and ϕ is a regular-
ization function that penalizes the coefficients xm,k to avoid
overfitting. The matrix T is a concatenation of the filters
[t1|t2| . . . |tM ], with det(T ) represents its determinant. The
hyperparameters ϵ and µ are positive real numbers for the
additional constraints imposed on the filters in T for effective
learning. While the log det(T ) ensures that the learned filters
are unique (linearly independent), the ∥T ∥2F keeps the values
bounded to balance the scale.

Re-writing (1) in matrix-vector form results in:

min
T ,X

1

2
∥T ·S−X∥2F +Φ(X)+ϵ∥T ∥2F −µ log det(T ) (2)

here, S = [s1|s2| . . . |sK ], X = [x1,k|x2,k| . . . |xM,k]1≤k≤K ,

T · S =

 t1 ∗ s1 .. tM ∗ s1
: : :

t1 ∗ sK .. tM ∗ sK

 and Φ imposes the

regularization ϕ column-wise on X . The single-layer CTL
formulation in (2) can be made deep (DCTL) by cascading
multiple layers of convolutional filters together to produce the
coefficients. The DCTL formulation for an L-layer network is
expressed as [17]:

min
T 1,...,TL,X

1

2
∥(TL · · · · (T 2 · (T 1 · S)))−X∥2F

+Φ(X) +

L∑
l=1

{ϵ∥T l∥2F − µ log det(T l)}
(3)

where l = 1, 2, ..., L corresponds to the different layers and X
represents the coefficients of the DCTL architecture at the last
layer. More information on the update of convolutional filters
and associated coefficients is presented in [17]. This back-
ground forms the basis for the proposed CL-DCTL method
for fusion discussed in the next section.

III. PROPOSED CONTRASTIVE LEARNING BASED DEEP
CONVOLUTIONAL TRANSFORM LEARNING (CL-DCTL)

This work proposes a joint optimization formulation em-
ploying DCTL and CL for learning the features from multi-
modal data in an unsupervised manner. Fig. 1(a) presents
the block diagram of the proposed CL-DCTL method. For
i = 1, 2, . . . , N sensors, let Si = [s1i, s2i, . . . , sKi] denote
the data collected from the ith sensor. Each of the ith sensor
data is processed through a dedicated L-layer DCTL encoder
network. Subsequently, contrastive loss is incorporated to
maximize the similarity between coefficients/features from the
same original sample across different sensors, while reducing
similarity between coefficients/features from different samples.
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The loss function of the proposed method is a combination of
DCTL and contrastive loss, expressed as:

L =

N∑
i=1

LDCTLi
+ α

∑
1≤i≤j≤N

LCLij
(4)

where α controls the trade-off between DCTL and contrastive
loss. Note that the DCTL loss is computed for each sensor,
while the contrastive loss is applied to all pairs (i, j) where
i ̸= j, resulting in N !/(N − 2)! pairs [19].

A. DCTL loss

Using (3), the DCTL loss for the ith sensor is computed as:

LDCTLi
= min
T 1i,...,TLi,

XLi

1

2
∥(TLi...(T 2i · (T 1i · Si)))−XLi∥2F

+Φ(XLi) +

L∑
l=1

{ϵ∥T li∥2F − µ log det(T li)}
(5)

where the first convolutional layer uses filters T 1i to generate
coefficients X1i. These coefficients are regularized using
Rectified Linear Unit (ReLU) activation function and dropout
before moving through additional convolutional layers. Finally,
XLi is obtained that represents the coefficients/features of the
Lth-layer of the ith DCTL encoder.

B. Contrastive loss

The contrastive loss for the (i, j)th pair is first considered,
and the same approach can be used for the remaining pairs.
For the (i, j)th pair, contrastive loss is computed between the
coefficients X∗

Li and X∗
Lj from the ith and jth DCTL encoder

networks. Here, X∗
Li and X∗

Lj denote the output of global
max pooling on XLi and XLj , respectively. Note that X∗

Li =
[x∗1

Li, . . . ,x
∗K
Li ] and X∗

Lj = [x∗1
Lj , . . . ,x

∗K
Lj ]. For each sample

x∗p
Li, one positive pair is created by pairing it with x∗p

Lj . Two
sets of K − 1 negative pairs are generated by pairing x∗p

Li

with x∗q
Li and x∗q

Lj , where q = {1, 2, ...,K}, q ̸= p. Now, the
contrastive loss for the pth sample of the (i, j)th pair is given
as:

LCLp
ij
=−log

(
exp(s(x∗p

Li,x
∗p
Lj)/τ)·(

K∑
q=1,q ̸=p

exp(s(x∗p
Li,x

∗q
Li)/τ)

+

K∑
q=1

exp(s(x∗p
Li,x

∗q
Lj)/τ))

−1
) (6)

where s(·) is the cosine similarity score and τ denotes a
temperature parameter. The loss LCLij

of the (i, j)th pair
is computed across all positive pairs and can be expressed
as:

∑K
p=1 LCLp

ij
. Using the Adaptive Moment Estimation

(ADAM) optimizer, the overall loss function in (4) is mini-
mized until it converges to the empirically calculated thresh-
old. This completes the training process, where all L-layer
convolutional filters, denoted by T 1i,T 2i, . . . ,TLi are learned
for i = 1, 2, ..., N sensors. Here, each of the DCTL encoder
network ensures diversity in the learned convolutional filters.

In this work, the feature/coefficient extraction capabilities
of the CL-DCTL framework is assessed for classification
tasks with limited labeled data. As illustrated in Fig. 1(b),
a supervised learning approach is used, where any existing
classifier from [20] can be employed to perform classification
on concatenated coefficients obtained from all frozen DCTL
encoder (sensor-specific) networks.

IV. RESULTS AND DISCUSSION

This section introduces two datasets from different domains
for evaluating the CL-DCTL method. It also briefly describes
the baseline methods for comparison, followed by a detailed
discussion of the experimental results in the subsequent sec-
tions.

A. Datasets

1) Cylindrical Roller Bearing (CRB) [21]: This is bearing
fault classification dataset. It includes vibration and acoustic
signals from the NU205E cylindrical roller bearing, recorded
at 70 kHz under 2050 rpm and 200 N load. It features three
fault types—Roller Fault (RF), Outer-race Fault (OF), and
Inner-race Fault (IF), each with five defect widths. For this
work, defect widths of 2.12 mm for RF, 1.97 mm for OF, and
2.03 mm for IF, are considered along with a healthy state for
classification.

2) USC-HAD [22]: This is a human activity detection
dataset. This data was collected using the MotionNode sensing
platform, with a 3-axis accelerometer and 3-axis gyrometer
placed on the front of the right hip of each subject. It includes
data from 14 subjects (7 female, 7 male, aged 21 to 49, mean
age 30.1), sampled at 100 Hz. Each subject performed 12
activities: walking forward, right, left, downstairs, upstairs,
running forward, sitting, jumping, sleeping, standing, and
using an elevator (up and down), each repeated five times.

B. Baseline Methods

Different state-of-the-art methods with single and multiple
sensors are used to evaluate the performance of the proposed
CL-DCTL method. They are broadly classified into:

• Single-sensor contrastive learning methods: These
methods consider only single-sensor data: SimCLR-TS
[11], TS-TCC [13], SemiTime [6], and TS-TFC [7]. Both
SimCLR-TS and TS-TCC learn representations using
only unlabeled data, with SimCLR-TS employing a 1-
dimensional CNNs as its encoder and TS-TCC utilizing
a transformer-based encoder. In contrast, SemiTime and
TS-TFC utilize label information for representation learn-
ing with CNNs based encoders.

• Multi-sensor contrastive learning method: Cosmo [14]
is a feature fusion contrastive learning method designed
to extract consistent information from multimodal time-
series data using separate encoder. We also provide late
fusion results employing one of the single-sensor based
techniques, SimCLR-TS, to highlight the importance of
joint multi-modal learning in the CL-DCTL framework.
SimCLR-TS is considered since it does not utilize label
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information for representation learning similar to the
proposed method. In late fusion, features from separate
SimCLR-TS trained on different sensor data are concate-
nated and fed into an external classifier.

Additionally, comparison with the recent CroSSL [16], a
self-supervised learning technique that utilizes latent masking
to learn efficient global embeddings from multimodal sensor
data is presented.

C. Experimental details and Results

The proposed CL-DCTL formulation with N = 2 is used
for both datasets, as they both have two sensors. In the CRB
dataset, data is collected using vibration and acoustic sensors,
while the USC-HAD dataset utilizes a 3-axis accelerometer
and a 3-axis gyrometer. Classification performance is evaluated
through accuracy scores and the results are presented in Table I
and II for the respective datasets. Both datasets are divided into
class-balanced training and test sets, with varying percentages
of labeling applied to the training data. It is to be noted that
since the proposed method does not require label information,
the DCTL encoders are learned using the entire training data,
while the classifier is learned only on the labeled instances of
the training data.

The best results of the CL-DCTL method are achieved with
a 3-layer DCTL encoder with 32, 64, and 96 convolutional
filters, ReLU activation, and a 0.1 dropout rate. ADAM
optimizer with a learning rate of 0.001 and a batch size of 64 is
used. Hyper-parameters for CL-DCTL are optimized through a
grid search to determine the best values for each dataset. More
information on the implementation details specific to the two
datasets is given below.

1) CRB dataset: The raw sensor data from both the sensors
is initially segmented into non-overlapping windows of 4096
samples and then normalized using min-max normalization.
For the 3-layer DCTL encoder network, kernel filter sizes of
24, 16, and 8 are applied to layers 1, 2, and 3, respectively,
for each sensor. The optimal hyperparameters are α = 1, µ =
σ = 10−4, and τ = 0.1. The training is carried out for 500
epochs after which convergence is observed.

TABLE I
RESULTS WITH CYLINDRICAL ROLLER BEARING DATASET

Methods Training data
10% 30% 50%

SimCLR-TS (S1) 0.633 0.813 0.852
SimCLR-TS (S2) 0.706 0.810 0.841

TS-TCC (S1) 0.543 0.728 0.797
TS-TCC (S2) 0.684 0.777 0.815

SemiTime (S1) 0.631 0.817 0.879
SemiTime (S2) 0.696 0.853 0.883
TS-TFC (S1) 0.550 0.598 0.850
TS-TFC (S2) 0.541 0.750 0.899

SimCLR-TS (Late Fusion) 0.755 0.873 0.905
Cosmo 0.750 0.897 0.942
CroSSL 0.730 0.889 0.939

Proposed CL-DCTL 0.948 0.950 0.951

2) USC-HAD dataset: The raw sensor data for both the
sensors is divided into 2-second time window for all the 3 axes
and concatenated, resulting in 600 samples for each sensor.
The data is normalized using Z-score normalization. Here, the
data samples from 10 subjects are used for training, while
samples from the remaining four subjects are used for testing.
For the 3-layer DCTL encoder network, kernel filter sizes of
8, 16, and 24 are applied to layers 1, 2, and 3, respectively.
The optimal hyperparameter values of α = 0.1, µ = σ = 10−4

and τ = 1 are used to generate the results. Here, the training is
carried out for 40 epochs after which convergence is observed.

D. Results Discussion

Table I summarizes the CRB classification results obtained
using five-fold cross-validation with a linear classifier trained
on 10%, 30%, and 50% of labeled data. Here, S1 refers to
vibration sensor data, and S2 refers to acoustic sensor data.
Table II shows the USR-HAR classification results obtained
from different methods using 10%, 20%, 30%, and 40% of
labeled data, where S1 denotes 3-axis accelerometer data
and S2 denotes 3-axis gyrometer data. For this dataset, a
2-layer MLP (Multi-Layer Perceptron) classifier with [48,
12] hidden neurons is used instead of a linear classifier for
improved classification results. The best-performing methods
in both tables are highlighted in bold. Results indicate that
the proposed CL-DCTL framework consistently outperforms
other methods, demonstrating its effectiveness for multi-modal
representation learning.

TABLE II
RESULTS WITH USC-HAR DATASET

Methods Training data
10% 20% 30% 40%

SimCLR-TS (S1) 0.293 0.477 0.482 0.484
SimCLR-TS (S2) 0.324 0.335 0.365 0.370

TS-TCC (S1) 0.454 0.483 0.544 0.607
TS-TCC (S2) 0.410 0.455 0.472 0.509

SemiTime (S1) 0.418 0.500 0.534 0.566
SemiTime (S2) 0.456 0.549 0.532 0.546
TS-TFC (S1) 0.482 0.497 0.522 0.575
TS-TFC (S2) 0.427 0.519 0.514 0.540

SimCLR-TS (Late Fusion) 0.430 0.485 0.522 0.542
Cosmo 0.502 0.530 0.617 0.670
CroSSL 0.437 0.569 0.602 0.633

Proposed CL-DCTL 0.510 0.599 0.633 0.665

It can be observed from Tables I and II that multi-sensor
based methods which fuse data from both sensors, show im-
proved performance compared to single-sensor based methods.
It can be seen that late fusion of SimCLR-TS outperforms
its respective single sensor method for both the datasets, but
shows poor performance compared to Cosmo, CroSSL (except
for 10% labeled data in Table I) and CL-DCTL. This is due
to its inability to capture multi-modal correlations that CL-
DCTL, CroSSL and Cosmo handle efficiently through the joint
optimization. When compared against Cosmo and CroSSL,
the proposed CL-DCTL demonstrates superior performance
especially for lower % of labeled data while a comparable
performance is observed for higher % of labeled data (≥40%)
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for both the datasets. The results demonstrate the fact that
diversity promoting DCTL based encoders exploit the complex
relationship between multi-modal data in a better way that
enables a robust classifier to be learned even with 10% labeled
data.

To analyze the computational complexity of the proposed
method, we compare the proposed CL-DCTL with the recent
Cosmo on the CRB dataset. As shown in Table I, the CL-
DCTL method (with ≈ 80k trainable parameters) outper-
forms Cosmo [14] (with 1.5 times more trainable parameters),
achieving ≈ 20% improvement in classification accuracy even
with only 10% labeled data. This highlights the ability of the
proposed CL-DCTL to learn effective representations using
less number of trainable parameters by enforcing uniqueness
in the learned filters. This efficiency not only reduces memory
usage but also enhances training and inference speeds, making
CL-DCTL highly practical for real-world applications.

Note that an ablation study is also conducted to evaluate the
significance of the uniqueness constraint (i.e., the log det(T li)
term in (5)) on the filters in the DCTL loss. The removal
of this constraint resulted in a decrease in the accuracy of
the proposed method from 94.8% to 72.7% for the case with
10% labeled CRB data, despite maintaining a fixed number
of trainable parameters. This demonstrates the advantage of
incorporating the uniqueness constraint in the formulation
which ensures that the learned filters are linearly independent.
The diversity in the learned filters enable effective feature
extraction from multi-modal data, resulting in improved per-
formance.

V. CONCLUSION

This paper presents a novel CL-DCTL framework that
combines CL with DCTL to learn robust representations from
multi-modal data in an unsupervised manner. The effectiveness
of the CL-DCTL framework in feature extraction facilitates ro-
bust classifier learning with limited data. Experimental results
demonstrate superior classification performance, even with just
10% labeled data, compared to baseline single and multi-
sensor approaches. By learning with fewer parameters, the
proposed method demonstrates scalability and potential for
real-world applications, particularly in scenarios with limited
data. Future research could focus on extending the CL-DCTL
framework to include various sensor modalities with different
dimensionalities.
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