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Abstract—We study the properties of beamformers, particu-
larly Capon and MMSE beamformers, in their ability to obtain
the true signal power of the signal of interest (SOI). A curious
feature of these beamformers is their tendency to either over-
estimate or underestimate the signal power. Consequently, they
are not asymptotically unbiased (as the sample size approaches
to infinity). To address this issue, we propose to shrink the
Capon beamformer by finding a scaling factor that minimizes
the mean squared error (MSE) of the signal power estimate.
The new beamformer, referred to as the Capon+ beamformer, is
evaluated against the Capon and MMSE beamformers in terms
of bias, signal power MSE, and signal waveform MSE. The
Capon+ beamformer demonstrates a superior balance in both
signal power and waveform estimation while exhibiting minimal
bias, which approaches zero as the sample size increases.

Index Terms—beamforming, Capon, signal power estimation,
shrinkage

I. INTRODUCTION

Spatial filtering (beamforming) is a widely used multi
antenna technique that allows recovering signals that are
contaminated by interference, clutter or colored noise. In some
cases, recovering the signal up to a certain scalar factor is
sufficient, as it does not significantly impact the output signal
quality. However, in other scenarios, it is crucial to preserve the
exact power of the signal as received at each individual antenna
in the array. This is particularly important in communication
applications without training symbols, where accurate signal
recovery is necessary, along with the correct scaling factor
to prevent constellation expansion or compression. A widely
used linear spatial filter is Capon’s [1] beamformer, also
known as the minimum power distortionless response (MPDR)
beamformer [2, Sec. 6.2.4] or minimum variance distortionless
response (MVDR) beamformer. The weights of the beam-
former depend on the array covariance matrix, composed of
interference plus noise covariance (INCM) and the power and
steering vector of the signal of interest (SOI). However, it
is well known that Capon’s beamformer is not performing
well in signal power estimation. The spatial spectrum of the
adaptive Capon’s filter tends to underestimate the power in
small samples [3], while overestimate in large samples as
is shown in this work. Another popular spatial filter, signal
estimation minimum mean squared error (MMSE) [2, Sec.
6.2.2] beamformer, on the other, underestimates the signal
power in large sample sizes (cf. Sect. 2). Consequently, neither

of these beamformers is asymptotically unbiased as the sample
size approaches infinity.

To mitigate this issue, we propose a shrinkage-based modi-
fication to Capon’s beamformer, where we determine a scaling
factor for Capon’s beamformer that minimizes the signal
power mean squared error (MSE). The resulting beamformer,
referred to as Capon+ beamformer, provides a more balanced
trade-off between power and signal waveform estimation com-
pared to both the Capon and the MMSE beamformers.

We consider an array of M sensors, where the array data
(snapshots) follows a linear model:

x(t) = as(t) + e(t), t = 1, . . . , T,

where a ∈ CM is the steering vector for the SOI, e(t) ∈ CM

is a random vector consisting of interference and noise, s(t) is
the signal waveform of the SOI, and T denotes the number of
snapshots. The steering vector a is dependent on the location
parameters (e.g., the direction of arrival (DOA) θ of the SOI).
The array covariance matrix Σ = E[x(t)x(t)H] has the form:

Σ = γaaH +Q, (1)

where γ = E[|s(t)|2] is the SOI power and Q = E[e(t)e(t)H]
is the INCM due to interfering sources and noise.

Let w denote the beamformer weight for the SOI. The
output of the beamformer, ŝ(t) = wHx(t), serves as the
estimate of the signal waveform s(t), and

γ̂ =
1

T

T∑
t=1

|ŝ(t)|2 =
1

T

T∑
t=1

|wHx(t)|2 (2)

serves as the estimate of the SOI power γ. With fixed (non-
random) w, the (expected) beamformer output power is

E[γ̂] = E[|ŝ(t)|2] = wHΣw. (3)

The Capon beamformer minimizes (3) subject to the constraint
that the SOI is passed undistorted:

min
w

wHΣw subject to wHa = 1. (4)

The optimum beamformer weight that solves (4) is [2]:

wCap =
Σ−1a

aHΣ−1a
=

Q−1a

aHQ−1a
. (5)
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The corresponding output power is given by

γCap = E[|wH
Capx(t)|2] = wH

CapΣwCap =
1

aHΣ−1a
, (6)

and thus wCap = γCapΣ
−1a. The bias of the power estimator

γ̂Cap =
1

T

T∑
t=1

|wH
Capx(t)|2. (7)

based on the Capon beamformer is B(γ̂Cap) = E[γ̂Cap] −
γ = (aHQ−1a)−1, which is always positive, i.e., the Capon
beamformer overestimates the signal power. This result is a
direct consequence of [4, Lemma 1]. The power estimator γ̂Cap
is not asymptotically unbiased either (when T → ∞).

Based on the above, we seek an optimal scaling constant
β > 0 for the shrinkage estimator of the form

wβ = βwCap. (8)

We determine a scaling factor α = β2 that minimizes the
MSE of the associated signal power estimator. We call the
resulting beamformer as the Capon+ beamformer. We an-
alyze the performance of the Capon, MMSE, and Capon+

beamformers in estimating or maintaining the presumed signal
power. Specifically, the beamformers are evaluated based on
their bias and signal power estimation MSE as well as the
signal waveform estimation accuracy.

The paper has connections to previous works. For example,
[5] proposed robust enhancements of the MMSE beamformer
(9) taking into account imperfect knowledge of SOI signal
power level. A linear combination of Capon beamformer and
the conventional delay-and-sum beamformer was considered
in [6], wherein the estimation of the optimal weighting coeffi-
cients that minimize the signal estimation MSE was considered
under the random matrix regime (RMT) and assuming that
signal power is known. RMT based beamformers have also
been developed in [7]. Robust beamforming techniques [8],
[9] address uncertainties in the array steering vector, often
caused by calibration errors or inaccuracies in the SOI loca-
tion parameters. However, robust beamformers often exhibit
suboptimal performance in signal power estimation.

II. MOTIVATIONAL EXAMPLE

The MMSE beamformer is defined by

min
w

{
MSE(w) = E[|s(t)−wHx(t)|2]

}
. (9)

The solution to (9) is

wMMSE = γΣ−1a =
γQ−1a

1 + γaHQ−1a
. (10)

Hence the Capon and MMSE beamformers are identical up to
a scale with relation

wMMSE =
γ

γCap
wCap. (11)

The power of the MMSE beamformer on the other hand is

γMMSE = E[|wH
MMSEx(t)|2] = γ · γ

γCap
, (12)

which follows from (11) and (6). Since γ/γCap < 1, the bias of
the MMSE beamformer is always negative. This is precisely
the opposite situation compared to the Capon beamformer.
Moreover, since γ/γCap ̸→ 1 as T → ∞, it follows from (12)
that the MMSE beamformer is not asymptotically unbiased
either.

Based on the above, a shrinkage estimator of the form (8)
with β ∈ [γ/γCap, 1] can strike a balance between the Capon
and the MMSE beamformer. This is illustrated next.

In Figure 1 we display the relative bias, (γ̂ − γ)/γ, the
empirical signal estimation normalized MSE (NMSE),

SE-NMSET =

T∑
t=1

|ŝ(t)− s(t)|2
/ T∑

t=1

|s(t)|2, (13)

and the signal power estimation NMSE, defined as

SP-NMSET =
(γ̂ − γ)2

γ2
.

All metrics are averaged over 15000 MC trials. As beamformer
weights we used the true weights (e.g., wMMSE, wCap or
wCap+ ), i.e., Q and γ are assumed to be known.

Simulation setting: The array is a Uniform Linear Array
(ULA) with M = 25 antennas and sources are narrowband
and farfield. The steering vector is defined as

a = a(θ) ≜ (1, e−ȷ·1· 2πd
λ sin θ, . . . , e−ȷ·(M−1)· 2πd

λ sin θ)⊤,

where λ is the wavelength, d is the element spacing between
the sensors and θ ∈ Θ = [−π/2, π/2) is the direction-of-
arrival (DOA) of the SOI in radians. We assume d = λ/2
sensor spacing. There are 4 independent circular complex
Gaussian sources: the SOI has DOA −45.02◦ while the three
interfering sources arrive from DOAs −30.02◦, −20.02◦, −3◦,
respectively, and having signal powers that are, respectively,
2, 4, and 6 dB lower than the power of the SOI. The noise is
white Gaussian with unit variance and the number of snapshots
is T = 60. The results are shown in Figure 1.

As can be noted from the top panel of Figure 1, the power
estimation bias of the Capon and MMSE beamformers are
significant in low SNR. The former having significant overesti-
mation while the latter underestimation bias. The middle panel
shows that the Capon+ beamformer (defined in Section III) has
slightly worse performance to MMSE beamformer in signal
waveform estimation, but this is compensated by its nearly
zero bias and much better signal power estimation displayed
in the bottom panel. This is not surprising since the Capon+

beamformer is designed to yield the minimum MSE in signal
power estimation.

III. OPTIMAL SIGNAL POWER BEAMFORMER

We have shown that the Capon and the MMSE beamformer
either overshoot or undershoot signal power estimation. This
implies that a shrinkage estimator of the form (8) using β ∈
[γ/γCap, 1] can strike a balance between the Capon and the
MMSE beamformer. We derive such an optimal beamformer
next. The proofs are available in extended arXiv submission
of this work [10] due to page limits.
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Fig. 1: Top: Relative bias of SOI power estimate. Middle:
signal estimation NMSE of SOI. Bottom: Power estimation
NMSE of SOI. There are 3 interfering sources with signal
powers of −2, −4, and −6 dB relative to the SOI.

Consider the power estimator γ̂ in (2) for some fixed
(known) w. The MSE of γ̂ is

MSE(γ̂) = var(γ̂) + [B(γ̂)]2, (14)

where B(γ̂) = E[γ̂] − γ and var(γ̂) = E[(γ̂ − E[γ̂])2] are
the bias and the variance of γ̂, respectively. Let CNM (0,Σ)
denote the M -variate circular complex normal distribution
with zero mean and positive definite Hermitian M × M
covariance matrix Σ. We have the following result.

Lemma 1. For fixed (known) w, the variance of γ̂ in (2) is

var(γ̂) =
E[|wHx(t)|4]− (wHΣw)2

T
. (15)

Furthermore, if x(t) iid∼ CNM (0,Σ), t = 1, . . . , T , then

var(γ̂) =
1

T
(wHΣw)2. (16)

Consider an estimator of the form

γ̂ = αγ̂Cap =
1

T

T∑
t=1

|wH
βx(t)|2, (17)

where wβ is defined in (8) and α = β2. We next determine
the coefficient α such that the beamformer output power of the
shrinked beamformer optimally reflects the true power level.

0.70 0.80 0.90 1.00
0.00

0.02

0.04

0.06

αCap+ αCapαMMSE

α(= β2)

Fig. 2: The NMSE (yellow) and the relative squared bias (blue)
of γ̂ = αγ̂Cap as a function of α when SOI has −6 dB SNR.

Theorem 1. The value α minimizing the MSE E[(αγ̂Cap−γ)2]
is

αo =
TγCapγ

E[|wH
Capx(t)|4] + (T − 1)γ2

Cap
, (18)

where γCap is defined in (6). The minimum MSE obtained by
γ̂Cap+ = αoγ̂Cap is

MSEmin = E[(αoγ̂Cap − γ)2] = γ2 var(γ̂Cap)

E[γ̂2
Cap]

, (19)

where var(γ̂Cap) = (E[|wH
Capx(t)|4] − γ2

Cap)/T . Furthermore,

if x(t) iid∼ CNM (0,Σ), then

αo =
γ

γCap
· T

T + 1
and MSEmin =

γ2

T + 1
. (20)

Hence, in the Gaussian case, the optimal signal power
estimator γ̂Cap+ = αoγ̂Cap has an expected value of

E[γ̂Cap+ ] = αoγCap = γ
T

T + 1

and B(γ̂Cap+) = −γ/(T + 1), which is negligible already for
moderate T . This can be seen in the top panel of Figure 1. In
addition, the minimum MSE in (19) is not dependent on the
SNR, i.e., the beamformer is able to maintain accurate power
balancing even at low SNR scenarios. This feature is visible
in the bottom panel of Figure 1 that shows the signal power
estimation NMSE. Note that the NMSE is heavily increasing
for the MMSE and the Capon beamformer as SNR decreases
while it remains constant for the Capon+ beamformer. In terms
of the signal waveform estimation NMSE, we can notice that
the MMSE beamformer has the best performance, yet Capon+

is inferior to it only in low SNR cases.
Figure 2 shows the NMSE of γ̂Cap+ = αγ̂Cap as a function

of α and the relative squared bias, [B(γ̂)/γ]2, for an SOI with
SNR of −6 dB. The NMSE is minimized at αo from (20),
marked by the dotted vertical line. Also shown are α = 1
(Capon) and α = γ2/γ2

Cap (MMSE). Notably, Capon and
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MMSE estimators exhibit large biases, while Capon+ achieves
near-zero bias. Capon+ also reduces the signal power NMSE
by about 3x compared to Capon and 2x compared to MMSE
beamformer. Thus, the proposed beamformer accurately pre-
serves the true signal power at the output with minimal error
while simultaneously achieving the lowest possible MSE.

IV. SIMULATION STUDIES

It is important to highlight that the signal power γ is usually
unknown or the assumed signal power is inaccurate. Also the
covariance matrices Σ and Q are in practice unknown and
are typically replaced by their estimates. Thus it is important
to propose an adaptive Capon+ beamformer for the cases
when γ is unknown and/or INCM Q is unknown, and these
quantities needs to be estimated. The simulation setting is the
same as earlier, described in Section II, with one distinction:
the signals are no longer Gaussian random signals, but 8-
PSK modulated random signals with fixed constant squared
amplitude, γk = |sk(t)|2, k = 1, . . . , 4. The codes are
available at https://github.com/esollila/Capon plus

A. Scenario A: INCM Q is known, γ is unknown
Scenario A typically corresponds to a multi-antenna radar

application where the receiver has access to secondary data
without the presence of the SOI. In this scenario, estimating
the power of the signal of interest, along with its DOA, can be
used to determine the target’s position. The scenario implies
full knowledge of wCap, but a need to estimate γ. Note that
γ = γCap − (aHQ−1a)−1, yielding the following estimate
which can be described as a debiased form of the Capon power
estimator:

γ̂deb = max(γ̂Cap − (aHQ−1a)−1, 0), (21)

where γ̂Cap is defined by (7) and max(·, 0) is used to guarantee
that the estimate remains positive. As shrinkage constant for
Capon+ we may now use

α̂Cap+ =
T γ̂Capγ̂deb

1
T

∑T
t=1 |wH

Capx(t)|4 + (T − 1)γ̂2
Cap

, (22)

where γ̂deb is given in (21). The Capon+ beamformer weight
is then simply wCap+ =

√
α̂Cap+wCap as β2 = α. When

implementing the MMSE beamformer in (10), we replace the
true γ by its estimate γ̂deb and use the latter form in (10) which
gives

wMMSE =
γ̂debQ

−1a

1 + γ̂debaHQ−1a

as the MMSE beamformer weight.
The results are shown in Figure 3 and they can be compared

to Figure 1. First, we notice that the estimate α̂Cap+ works
well, and the obtained signal power γ̂Cap+ is essentially
unbiased for all SNR levels. This is clearly not the case
for the MMSE and the Capon beamformer. Also the signal
power NMSE is the best among the methods as expected. In
terms of signal estimation NMSE, the Capon+ and the MMSE
beamformers have similar performance except at very low
SNR. This indicates that Capon+ beamformer provides a better
alternative to the MMSE beamformer in practical settings.

−0.20

0.00

0.20

0.40

R
el

at
iv

e
B

ia
s,
(γ̂

−
γ
)/
γ

0.10

0.20

0.30

0.40

Si
gn

al
E

st
im

at
io

n
N

M
SE Cap

MMSE

Cap+

−10 −8 −6 −4 −2 0

0.00

0.05

0.10

0.15

SNR of SOI, γ/σ2 [dB]
Po

w
er

es
tim

at
io

n
N

M
SE

Fig. 3: Results for scenario A. The sample length T = 60.

B. Scenario B: Q is unknown, γ is known

Scenario B could represent a communication setting where
the power of the signal of interest remains stable over time,
allowing for accurate estimation, while spatial interference
fluctuates due to the varying activity of other sources. It
implies that we need to use an adaptive Capon beamformer,
where we estimate the unknown Σ by the sample covariance
matrix (SCM) Σ̂ = 1

T

∑T
t=1 x(t)x(t)

H, and estimate the
Capon beamformer by

ŵCap = ˆ̂γCapΣ̂
−1

a with ˆ̂γCap = (aHΣ̂
−1

a)−1. (23)

Note that the covariance matrix and the weight vector are esti-
mated from the same snapshots. This is slightly different from
the sample matrix inversion (SMI) adaptive beamformer [11],
which uses an independent secondary data set of only inter-
ference and noise samples to estimate the INCM Q. Note that
ˆ̂γCap is not the same estimator as γ̂Cap as the latter uses true
wCap while the former uses adaptive weight vector ŵCap in
(23). For large sample lengths, however, they are equivalent.
Since the signal power γ of the SOI is known, the Capon+

beamformer is defined as ŵCap+ =
√
α̂Cap+ŵCap with the

shrinkage constant estimated using

α̂Cap+ =
T ˆ̂γCapγ

1
T

∑T
t=1 |ŵH

Capx(t)|4 + (T − 1)ˆ̂γ2
Cap

. (24)

Note also that the shrinkage constants in (22) and (24) are
different due to different assumptions in Scenarios A and B.
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Further note that an adaptive MMSE beamformer in scenario
B is simply ŵMMSE = γΣ̂

−1
a.

When Σ is estimated, both data stationarity and a larger
number of snapshots than the T = 60 used in Figure 1 are re-
quired before we can observe that beamformer’s performance
aligns with the asymptotic scenario. We present results for two
different sample sizes: T = 200 and T = 500. Figure 4 shows
the results when the sample size to estimate the covariance
matrix is T = 200. As can be noted, for small sample length,
the MMSE and Capon beamformer’s performance is far from
desired or even expected. We can notice that in the higher
SNR, the adaptive Capon beamformer has underestimation
bias (instead of overestimation bias as in the asymptotic case)
while the adaptive MMSE beamformer has overestimation bias
(instead of underestimation bias). This strong reverse effect of
bias causes the MMSE beamformer to perform worse than the
other two beamformers in terms of signal estimation NMSE
for SNR > −5 dB. For T = 500, the large sample effects starts
to kick in and the beamformers start to behave more similarly
to what is observed in Figure 1 and Figure 3. Notably, the
Capon+ beamformer provides solid performance throughout.

V. CONCLUSIONS

We considered beamformers of the form wβ = βwCap. The
Capon (resp. MMSE beamformer) power estimates γ̂Cap (resp.
γ̂MMSE) can exhibit a large positive (resp. negative) bias and
high signal power MSE at low SNR, indicating a subopti-
mal bias-variance tradeoff.The proposed Capon+ beamformer
achieves minimal signal power MSE and comparable signal
waveform MSE as the optimal MMSE beamformer, offering
a better balance between power and waveform estimation.
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Fig. 4: Results for scenario B. The sample length T = 200.
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Fig. 5: Results for scenario B. The sample length T = 500.
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