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Abstract—In this paper we propose a similarity function
between graphs based on a mathematically principled metric for
graphs of different sizes: the graph generalised optimal subpat-
tern assignment (GOSPA) metric. The similarity function is based
on an optimal assignment between nodes and has an interpretable
meaning in terms of similarity for node attribute error, number of
unassigned nodes, and number of edge mismatches. The proposed
similarity function is computable in polynomial time. We also
propose its use in Gaussian processes (GPs) for graphs to predict
molecular properties. Experimental results show the benefits of
the proposed GP model compared to other GP baselines.

Index Terms—Gaussian process, graph metric, regression.

I. INTRODUCTION

A graph is a type of representation that contains both node
features and connectivity information and is able to model
structural relationships and domain-specific properties in var-
ious fields [1]-[3]. As molecules consist of atoms and bonds,
they can be intuitively represented by graphs [4]. Gaussian
processes (GPs) are a type of kernel-based method to solve
regression and classification problems [5] that are especially
suitable for small datasets, since they typically only have a few
parameters and also provide the uncertainty quantification on
the models. GPs can be used with inputs that graph using
a kernel for graphs [6]. Generally, there are three types of
kernels or similarity functions for graphs:

(D Diffusion kernels based on a metric on graphs [7,
Chap. 5], such as the graph edit distance (GED) [8]. A
drawback of these kernels is that they are computationally
intensive to compute because of the matrix exponential in
kernel calculation.

(I) Similarity measures based on applying a transformation
to the GED such that low metric values are mapped to high
similarities, and the other way round [7, Chap. 5]. While these
transformations do not define valid kernels, they can be used
in practice [9]. A drawback is that the computation of the GED
is generally NP-hard [10].

(IIT) Kernels based on features obtained via pre-processing
of the graphs, which can imply a loss of information. Examples
of these are the random walk kernel [11], [12], and the
Weisfeiler-Lehman (WL) graph kernel [13], [14].

In this paper, we propose a similarity function between
graphs, where each node can have certain features, that is
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based on a mathematically principled metric for graphs, meet-
ing the identity, symmetry and triangle inequality properties.
In particular, we propose to use the graph generalized optimal
subpattern assignment (GOSPA) metric [15], [16]. The graph
GOSPA metric is based on computing an optimal assignment
between nodes by penalising node attributes for assigned
nodes, the number of unassigned nodes and the number of
edge mismatches. Therefore, the graph GOSPA similarity
function has an interpretable meaning, inherited from the graph
GOSPA metric, which takes into account the whole graph
information and can be computed in polynomial time.

Our contributions can be summarised as follows:

(1) We propose a novel similarity measure for graphs, based
on the graph GOSPA metric.

(2) We show the decomposition of the graph GOSPA
similarity into interpretable components.

(3) We use the graph GOSPA similarity as the kernel
function of a GP to predict molecular properties in several
datasets. Experimental results demonstrate that Graph GOSPA
GP has the best performance compared to other GP baselines
in several of the considered datasets. We also show that the
decomposition of the kernel can be used to assist with the
interpretation of the similarity score.

II. BACKGROUND
A. Weighted undirected graphs

A weighted, undirected graph is formed by vertices (also
called nodes) and weighted edges, each edge connecting two
vertices. The set of vertices is V' = {z1,...,z,} with the i-th
node feature denoted by z; € RY [17]. The edges and their
weights can be represented by a symmetric adjacency matrix
A € R™*"™, whose (4, ) element A(i, j) indicates the weight
between the i-th and j-th node, with A(7,5) = 0 indicating
no edge.

B. Graph GOSPA metric

The graph GOSPA metric is a mathematically principled
metric, as it meets the identity, symmetry, and triangle inequal-
ity properties, for graphs of different sizes [15]. Let us consider
two graphs X and Y with vertices Vx = {z1,...,Zny}
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Vv ={v1,-..,Yny > and adjacency matrices Ax € R"x*"x
and Ay € Rry>ny,

The graph GOSPA metric looks for an optimal assignment
between nodes in Vx and nodes in Vy, with the option of
leaving some nodes unassigned. The assignments between Vx
and V3 can be represented by an (nx + 1) x (ny + 1) binary
matrix W. The element W (¢, j) = 1 if x; is assigned to y;. If
x; remains unassigned, W (i,ny + 1) = 1, and if y; remains
unassigned then W(nx + 1,7) = 1. The set of all binary
matrices is denoted by Wx y, which is defined in [15, Eq.
@-(D].

If we consider X to be a ground truth graph and Y an
estimate (obtained by some algorithm), the unassigned nodes
in X and Y are referred to as missed and false nodes,
respectively. For 1 < p < oo, a scalar ¢ > 0, edge mismatch
penalty € > 0 and base metric d(-, -) on the node feature space
RY, the graph GOSPA metric déc’f)(-, -) between two graphs
X and Y is [15]

deN(X, V)= min  (te[DYy W] +exy (W)P)P (1)

EWx .y
where

d(z;,y;)" i <nx,j<ny,

CP . .

c = <
Dyy(ij) =14 2 Pmnxt LISy g

> ZS”X?]:nY+17

0 i=nx+1,j=ny +1,
and

6]7
6X,Y(Vv)p - EHAleznx.,l:ny - Wl:nx,lznyAYHa (3)

where Wi.y, 1:ny is the matrix formed by the first nx rows
and the first ny columns of matrix W (e.g., removing the
last row and column of W) and || - || is the component-wise
1-norm of a matrix.

With the relaxation of the binary constraints W (i,j) €
{0,1} to W(i,j) > 0,Vi,j, we obtain a relaxed version of
the metric, which also satisfies the metric properties and can
be computed in polynomial time using linear programming
[18]. We also refer to this relaxed version of the metric as the
graph GOSPA metric.

The graph GOSPA metric penalises node attribute errors
for assigned nodes, the number of unassigned nodes (each
with a cost ¢P/2), and the number of edge mismatches. In
particular, for two pairs of assigned nodes (two nodes in X and
two nodes in Y), the edge mismatch penalty is € multiplied
by the absolute difference in the corresponding edge weights.
In addition, each edge connecting an assigned node and an
unassigned node creates a half-edge mismatch penalty of €P /2
multiplied by the weight of the edge, see full details in [15].

III. GAUSSIAN PROCESSES FOR GRAPHS WITH GRAPH
GOSPA SIMILARITY
A. Gaussian processes

A Gaussian Process (GP) is a non-parametric Bayesian
model over functions [5]. A GP can be fully specified by its

mean m(-) and covariance function (also called kernel) k(- -)
and can be written as f ~ GP(m(-),k(:,-)).

For a regression task, consider that we have a set of n data
points, D = {(x;,¥;)}7,, where x; € X is the input data
point and y; € R is its associated output. In GP regression, we
assume that there is additive noise such that y; = f(x;) + €;,
where f(x;) is the function value of sample x; and ¢; is a zero-
mean Gaussian noise with variance 2, which is independent
of other variables. Given the dataset and a new test point x.,,
GP regression enables us to estimate the associated output y,.,
see [5] for details.

B. Kernel based on the graph GOSPA metric

A kernel is a function k£ : X x X — R that measures the
similarity between elements of the space X. Kernel functions
like the radial basis function (RBF) kernel and the Matérn
kernels are commonly used [5], but they are designed for a
vector input, x € RN. For graphs, there are kernels such as
random walk kernels [19] or Weisfeiler-Lehman graph kernels
[13]. An alternative is to define similarity functions that can
work as kernels, but do not meet the above properties, for
instance, a similarity function based on the GED [7, Chap. 5].

Here we introduce the similarity function based on the graph
GOSPA metric. Let X and Y be two graphs, p’ > 1,£ >0, a
length scale hyperparameter, and a multiplication factor, A >
0. We define the similarity function between two graphs based
on the graph GOSPA metric d\" (-, ") as

(X, Y)Y
- 4)

E(X,Y) = Aexp (—
As will be shown in Section III-C, this similarity function can
be decomposed into its different components to provide clear
interpretability of the results. Although similarity functions
defined like this are not generally positive semidefinite [20],
they can show suitable performance in practice [7], [9]. To
improve the stability of the algorithm, we add a small positive
number to the diagonal elements of K. In addition, during
the training process, if the resulting covariance matrix for a
given choice of pre-selected hyperparameters (c, €, p,p’, A) is
not positive definite, these hyperparameters are discarded.

C. Decomposition of graph GOSPA similarity function

In this section, we present the decomposition of the graph
GOSPA similarity function. We first review the graph GOSPA
metric decomposition into different types of costs [15]. We
know from the graph GOSPA metric that Dx y (4, j) repre-
sents the following costs:

1) Node attribute (localisation) error for assigned nodes, if
1 <nx,j<ny.
2) Missed node costif it <nx ,j=ny + 1.
3) False node costif t: =nx + 1, j < ny.
The sets of indices (4, j) that belong to each of the previously

mentioned categories are denoted by S;, S and S3. Therefore,
for a given assignment matrix W, we have the following costs:
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node attribute (localisation) cost, number of missed nodes cost,
and number of false nodes cost. They are

X, Y, W)P = Y Dxy(i,j)W(i,J) )
(’Lj )EST
m(X,Y,W)? Z W (i, 7) (6)
(13)652
f(X,Y, W)P Z W (i, 7). (7)
(1])655

Let W* denote the optimal assignment in (1). Then, the graph
GOSPA metric can be written as

di(X,Y) = (1(X Y, WP 4 m(X, Y, WP

1/p
—|—f(X,Y7W*)p—|—eX,y(W*)”> . ®

Therefore, the graph GOSPA similarity function for p’ = p
can be written as the product over the similarity functions for
node attribute errors, number of missed nodes, number of false
nodes and edge mismatches

E(X,Y) =k (X,Y) b (X, V) g (X, V) ke (X,Y) (9

where
ki (X,Y) = Aexp (—W) (10)
kan (X,Y) = Aexp (—W) (1)
ke (X,Y) = Aexp (—W) (12)
ke (X,Y) = Aexp (—W) . (13)

It is also possible to merge the similarities for the missed
and false nodes into a single similarity score for unas-
signed nodes, given by the product of these two similarities
ko(X,Y) = kn(X,Y)ke(X,Y). For the cases that p’ # p,
the metric property of d'"® still holds, but k (X,Y") cannot
be decomposed as forms in (9).

IV. EXPERIMENTAL RESULTS

In this section, we first compare the Gaussian process based
on the graph GOSPA similarity function with other Gaussian
process models to make predictions on molecular properties
in real datasets. Then, we illustrate the decomposition of the
graph GOSPA similarity function applied to molecules.

A. Experimental setup

Datasets: In the experiments, we use 6 regression datasets,
five from MoleculeNet [21], and one from [22]. Specifically,
ESOL, FreeSolv, Lipophilicity and Photoswitch are datasets
about the physical chemical properties of molecules and there
is only one property to predict. QM8 is a dataset consisting of
quantum mechanical properties. In this dataset, for numerical
tractability of GPs, we only use a subset of the molecules by

randomly sampling 2000 molecules from the full dataset and
only consider the first 6 properties to predict.

The datasets are split into training and test sets with a ratio
of 80/20. The graphs are obtained by converting the SMILES
strings [23] into the corresponding molecular graphs.

Baselines: We compare the proposed method with GPs with
the following kernels for molecules: Tanimoto kernel [24]
using ECFP fingerprints [25], subsequence string kernel (SSK)
[26] using SMILES [23] and WL kernel [13] using graphs
with atom type as the node attributes. Shortest path kernel
[27] for labelled graphs, neighbourhood hash kernel [28], edge
histogram kernel and vertex histogram kernel [29].

Evaluation metrics: For ESOL, FreeSolv, Lipophilicity and
Photoswitch datasets, we use the root mean square error
(RMSE) to evaluate the performance. For QMS, we use mean
absolute error (MAE), as this is the common choice in other
papers for this dataset [21], [30].

Implementation details: All GP models are single-output
GPs and the results are obtained by averaging over 20 random
splits of the training and the test set. The node attribute in the
GP model based on graph GOSPA similarity is the atom type.
The base metric for node attributes of the graph GOSPA metric
isd(z,y) =0if x =y, and d(z,y) = c if © # y. All GPs are
trained using the L-BFGS-B optimiser [31], except the graph
GOSPA similarity, which is trained with the Adam optimiser
[32] on the marginal log-likelihood with 2000 iterations. The
learning rate is set to 0.001. The hyperparameters for graph
GOSPA metric in the graph GOSPA similarity function are
setto c = 3, p = 2, p’ = 1, the value of € is set based
on the optimal value of marginal likelihood with grid search
between [0,3] with step 0.2. The hyperparameter ¢ and \ for
the graph GOSPA similarity function are optimised during the
GP training process, the initial value is set to / =1, A =1 .

The models using graph GOSPA similarity, SSK kernel and
Tanimoto kernel are implemented in GPflow! [33]. The WL
kernel, shortest path kernel, neighbourhood hash kernel, edge
histogram kernel and vertex histogram kernel are obtained
from functions in the GraKeL library [34]. The GP models for
these graph kernels are using the implementation in the library
GAUCHE [14], which is implemented in GPytorch [12].

B. Results

Table I shows the results of the proposed methods and the
baselines on the molecular datasets. The best results for each
task are shown in bold, and the underlined values are the
second-best results. From Table I, it can be observed that the
proposed graph GOSPA similarity performs the best in the
three datasets, and second best in the FreeSolv dataset.

In Table II, which contains the results of the QM8 dataset,
the SSK kernel produces the best results followed by graph
GOSPA and Tanimoto. Graph GOSPA performs the best
among the algorithms that use a molecular graph as input.

ICode: https://github.com/JinhaoGu/GraphGOSPA-similarity.
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TABLE I: Molecular property prediction over 4 physical chemical datasets.

Dataset (RMSE )

Kernels ESOL FreeSolv  Lipophilicity  Photoswitch

SSK 0.66 £ 0.02 134 £0.03 0.73 £0.01 26.62 +1.07
Tanimoto 1.02 £ 0.02 188 +£0.13 0.76 £0.01 23.42+ 0.80

WL Kernel 0.75+0.01 148 £0.04 0.74 £0.01 24.02 +0.65
Shortest Path Labelled | 0.98 £ 0.01 2.41 +0.05 1.02 £0.02 43.58 £7.11
Neighbourhood Hash | 0.96 £ 0.05 1.82+£0.13 171 £0.18 33.62 £ 5.11
Edge Histogram 2.12+£0.02 394 +£0.09 1.19+0.01 6676+ 1.10
Vertex Histogram 1.12+£0.01 293 +0.07 1.09+0.01 4895+ 1.52
Graph GOSPA 0.66 + 0.01 1.37+0.05 0.70 +0.03 21.44 + 0.68

TABLE II: Molecular property prediction over a subset of 2000 molecules on the QM8 dataset. MAE values are scaled up by

102

Dataset (MAE )

Kernels

QMS subset (scaled up by 10%)

E1-CC2 E2-CC2 f1-CC2 2-CC2 E1-PBEO E2-PBEO
SSK 1.41 £ 0.01 1.20 £ 0.02 2.46 + 0.06 4.09 +0.04 1.29 +0.01 2.34 + 0.05
Tanimoto 141 £0.01 136+0.02 245+ 0.05 398 +0.06 147 +0.01 2.29 +0.05
WL kernel 276 £0.02 199 +001 283+003 423+003 3.10+0.02 251 +0.02
Shortest Path Labelled | 2.94 £ 0.02 2.13 + 0.01 293 +£0.02 445+0.26 327 +0.02 2.67 +0.02
Neighbourhood Hash | 2.97 £ 0.03 2.26 £ 0.04 3.62 +0.26 4.57 +0.08 3.29 +0.05 2.81 +0.09
Edge Histogram 3.61 £0.03 2.66+0.02 3.17+0.03 4.66+0.03 3.87+0.03 3.18 +0.02
Vertex Histogram 324 £0.02 229+£002 297+0.03 455+003 355+0.02 287=+0.02
Graph GOSPA 148 £0.01 129 +0.01 254+006 3.81+0.05 141+0.02 244 +0.05

C. Decomposition of graph GOSPA similarity example

In this section, we illustrate how the graph GOSPA similar-
ity function can be decomposed into different parts to quantify
the similarity of different parts in a graph (node attributes,
unassigned nodes and edge mismatches). For demonstration,
we choose three molecules from the ESOL dataset, shown in
Figure 1. We set the hyperparameters ¢ = 3, p’ = p = 1,
€ =0.8, A =1, and ¢ has been set to the optimised value on
the ESOL dataset, ¢/ = 27.371, see Section IV-A.

cceeeecce=c ccceccec(=0)oc 0=C2NC(=0)C1(CCC1)C(=0)N2

Fig. 1: Example molecules with their SMILES strings [23].

In Figure 2, we show the decomposition of the graph
GOSPA similarity. Figure 2a shows the similarity matrix
between the molecular graphs of the molecules in Figure 1.
The indices 0, 1 and 2 in Figure 2 represent the molecules
from left to right in Figure 1.

As can be seen in Figure 1, intuitively, the molecules
become more different from left to right, being molecules 0
and 1 more similar than molecule 2. Therefore, the similarity
decreases from molecule 0 to molecule 2. Figures 2b, Figure
2c, and Figure 2d show the decomposition of total similarity.
In Figure 2b, the matrix shows the similarity in the node
elements. By looking at the first row, we can see that molecule
0 is more similar in node elements to molecule 1 than to

o
o
3
o

o
3

Molecule index
1
S
®
=
Molecule index
1
o
©
2

2
2

o

1 1
Molecule index Molecule index

(a) Similarity matrix of graphs. (b) Similarity matrix of node ele-

ments.

o
0

Molecule index
1
Molecule index
1
o
©
G

2
2

Molecule index

1
Molecule index

(c) Similarity matrix of unas-

signed nodes.

(d) Similarity matrix of edges.

Fig. 2: Plots of the decomposition of the graph GOSPA
similarity (A = 1) across the three molecules in Figure 1.
(a) Similarity of graphs; (b) similarity of node elements; (c)
similarity of unassigned nodes; (d) similarity of edges.

molecule 2. Figure 2¢ shows the similarity of the unassigned
nodes. Again, molecule O is more similar to molecule 1 than
to molecule 2 since they have a higher number of assigned
nodes. Finally, Figure 2d shows the decomposition for edge
similarity between graphs. Again, molecule 0 is more similar
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to molecule 1 than to molecule 2, since they have fewer edge
mismatches.

V. CONCLUSION

In this paper, we have proposed a Graph GOSPA similarity
function, which measures graph similarity in an interpretable
manner based on the graph GOSPA metric. The interpretability
that comes from the similarity decomposition is an important
characteristic, as it helps identify the similar/different aspects
between two graphs. We have also introduced a GP model
based on the Graph GOSPA similarity, which is able to learn
both node and structural features in graphs by measuring
differences in node attributes, number of unassigned nodes,
and edge mismatches.

Finally, we have evaluated the proposed Graph GOSPA
GP on various molecular property prediction datasets. Exper-
imental results demonstrate that Graph GOSPA GP has better
performance than the baselines in a number of datasets, and
closely follows the best-performing algorithms when it does
not provide the best results.
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