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Abstract—Affine formation control (AFC) is a distributed
networked control system that has recently received increasing
attention in various applications. AFC is typically achieved using
a generalized consensus system where the stress matrix, which
encodes the graph structure, is used instead of a graph Laplacian.
Universally rigid frameworks (URFs) guarantee the existence
of the stress matrix and have thus become the guideline for
such a network design. In this work, we propose a convex
optimization framework to design the stress matrix for AFC
without predefining a rigid graph. We aim to find a resulting
network with a reduced number of communication links, but
still with a fast convergence speed. We show through simulations
that our proposed solutions can yield a more sparse graph, while
admitting a faster convergence compared to the state-of-the-art
solutions.

Index Terms—network design, consensus, graph rigidity, for-
mation control, multiagent systems, stress matrix

I. INTRODUCTION

Distributed formation control is an essential task for robotic
swarming applications [1], [2], [3], where agents use relative
information such as interagent distances, relative positions,
etc., to achieve and maintain a desired geometric pattern in
two- or three-dimensional space. Such a system is typically
characterized by a framework [4] consisting of (a) a configura-
tion, which represents the collection of agent positions forming
a geometric pattern, and (b) a graph where the edges denote
the communication links for information exchange. Such a
networked system shares similarities with sensor networks,
relative localization, distributed optimization, etc., where the
communication pattern and capacity play a critical role [5],
[6], [7].

Recently, affine formation control (AFC) has gained in-
creasing attention due to its flexibility in maneuvering while
maintaining coordinated motion [8]. Unlike traditional forma-
tion control that enforces rigid geometric constraints, AFC
allows for controlled scaling, shearing, etc., making it particu-
larly useful for dynamic environments and adaptive mission
planning. AFC follows a consensus-like framework, where
control inputs are derived as linear combinations of position
differences between neighboring agents. As compared to the
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conventional average consensus using the graph Laplacian,
AFC adopts a stress matrix - a generalization of the Laplacian
with weighted edges. The universal rigidity of the associated
framework guarantees the existence of stress with specific
properties that enable AFC. Universally rigid frameworks
(URFs) are also applied in network localization [9], tensegrity
frameworks [10], etc.

Interagent communication is essential in distributed forma-
tion control, making the reduction of communication load a
crucial necessity, due to bandwidth and power constraints of
agents. However, a sparse network with few edges is typically
less efficient in information exchange, and thus slows down the
convergence of consensus-based algorithms including AFC.
This has been an ongoing discussion in consensus theory in-
volving the algebraic connectivity [11], [12]. In AFC, design-
ing the stress matrix with fewer edges while preserving rigidity
and convergence speed is challenging. Earlier mathematical
literature discusses URF design using special geometries [13],
[10], later followed by numerical stress calculations for AFC
applications [14], [8]. However, manual graph design becomes
impractical for larger networks, and structured geometries
like Grünbaum polygons [13] can create unbalanced networks
that hinder robustness. Thus, generative methods [15], [16]
that directly design a possibly sparse stress matrix from a
given configuration without predefined graphs are preferred.
A sparse nullspace reconstruction approach [15] achieves
substantial sparsification but fails to maintain convergence
from an arbitrary initial configuration in many cases. More
recently, mixed-integer semidefinite programming (MISDP)
is adopted in [16] for sparse stress design with optimized
convergence speed, but raises concerns about optimality and
computational complexity.

In this paper, we present an efficient convex optimization
framework to design the stress matrix with two key objectives,
(a) network sparsification and (b) convergence acceleration,
and we further give insights on how to balance these two
rather conflicting objectives. In Section II, we introduce the
preliminaries of graph rigidity and how stress matrices play a
critical role in AFC. We provide a preliminary problem formu-
lation based on the properties of stress and our optimization
objective, which turns out to be a non-convex problem. In
Section III, we relax the non-convex problem into a concise
and tractable convex problem with insights into the choice of
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hyperparameters. Finally, we compare our proposed solution
with the aforementioned state-of-art using several numerical
examples in Section IV, before reaching a conclusion and
giving potential future research directions in Section V.

Notations. Vectors and matrices are represented by lower-
case and uppercase boldface letters, respectively such as a and
A. Sets and graphs are represented using calligraphic letters,
e.g., A. Vectors of length N of all ones and zeros are denoted
by 1N and 0N , respectively, and their matrix versions are
similarly 1M×N and 0M×N . An identity matrix of size N
is denoted by IN . The Kronecker product is denoted by ⊗,
which has relationships with the vectorization operator vec(·)
[17]. The diag(·) operator creates a diagonal matrix from a
vector and tr(·) denotes the trace operator. λk(A) denotes the
k-th smallest eigenvalue of a symmetric matrix A.

II. FUNDAMENTALS

A. Graphs and Rigidity Theory

Consider N mobile agents moving in D-dimensional Eu-
clidean space where N ≥ D + 1. An undirected graph
G = (V, E) is used to model a communication network,
where the vertices V = {1, ..., N} denote the agents, and
the edges E ⊆ V × V denote the pairwise interactions, e.g.,
information exchange. We use N = |V| and M = |E| as
a shorthand notation for the number of vertices and edges,
respectively. The set of neighbors of a node i is defined as
Ni = {j ∈ V : (i, j) ∈ E}. Let pi ∈ RD be the position of
node i ∈ V and the collection of all nodes, the configuration, is
P = [p1, ...,pN ] ∈ RD×N . A generic configuration [18] has
algebraically independent node coordinates, i.e., no geometric
constraints among nodes. Classic nongeneric configurations
include nodes forming a line, a regular polygon, etc.

A framework F = (G,P ) is a tuple of the graph and its
associated configuration. Intuitively, the rigidity of frameworks
can be judged by whether a different configuration exists given
the distances between the nodes on the edges of the graph.
More formally, from [14], let P ′ = [p′1, ...,p

′
N ] ∈ RD×N ,

then two frameworks (G,P ) and (G,P ′) are equivalent if
∀(i, j) ∈ E , ∥pi − pj∥2 =

∥∥p′i − p′j∥∥2, and they are congruent
if ∀i, j ∈ V, ∥pi − pj∥2 =

∥∥p′i − p′j∥∥2. The global rigidity of
a framework F defined in RD requires that all frameworks that
are equivalent to F are also congruent to it. Note that global
rigidity is sometimes simply referred to as rigidity. Frame-
works that are not globally rigid are flexible. The universal
rigidity of a framework F defined in RD requires F to be
globally rigid in RD′

for any D′ ≥ D. Fig. 1 presents a few
examples to illustrate the rigidities.

Universal rigidity is algebraically represented by an equi-
librium stress ωij ∈ R for every edge (i, j) ∈ E , leading to a
set of weights associated with the edges, which satisfy∑

(i,j)∈E

ωij(pi − pj) = 0D. (1)

(a) flexible (b) globally rigid (c) universally rigid

Fig. 1. Examples of frameworks in R2 with increasing rigidity [14]

A more compact form of (1) is ΩP⊤ = 0N×D, where Ω ∈
RN×N is called the stress matrix and is defined as

[Ω]ij =


0, if (i, j) /∈ E
−ωij , if i ̸= j, (i, j) ∈ E∑

k∈Ni
ωik if i = j

. (2)

Alternatively, the stress matrix can be defined using the graph
incidence matrix B ∈ RN×M as

Ω = B diag(ω)B⊤, (3)

where ω ∈ RM is a vector containing all the equilibrium
stresses. Note that Ω reduces to a standard graph Laplacian if
diag(ω) = IM , i.e., equal weights for the edges. It also has
1N in the nullspace like the Laplacian. The following theorem
establishes the important properties of Ω related to universal
rigidity.

Theorem 1. (Universally Rigid Frameworks and Stress Matri-
ces) Given a framework F = (G,P ) with P being a generic
configuration, F is universally rigid if and only if there exists
a positive semidefinite stress matrix Ω with rank N −D− 1.

Proof. See [19], [8], [16]. ■
Although a generic configuration is generally assumed for
mathematical guarantees, nongeneric geometries are more
interesting for formation control applications. It is worth
mentioning that our stress design approach works for both
generic and nongeneric configurations.

B. Consensus-Based Formation Control

Let z =
[
z⊤1 , ...,z⊤N

]⊤ ∈ RDN , where zi ∈ RD,∀i ∈ V ,
be the true positions of agents that are governed by the single-
integrator dynamics żi = ui where ui is a velocity control
input to be computed by agent i. Furthermore, recall the stress
matrix from (1) that satisfies ΩP⊤ = 0, which can also be
written as

(Ω⊗ ID)p = 0, (4)

where p = vec(P ) using the Kronecker-vectorization prop-
erty. As such, a consensus-like control law [14], [8] can be
designed as ui = −

∑
j∈Ni

ωij(zi − zj),∀i ∈ V , such that
the collective dynamics lead to a linear time-invariant system

ż = −(Ω⊗ ID)z. (5)

It is straightforward to see from (4) that p is an equi-
librium of system (5), which is allowed by Ω that has a
(D + 1)-dimensional nullspace. This is advantageous over
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the conventional average consensus system, where the graph
Laplacian is used because the graph Laplacian has only a 1-
dimensional nullspace corresponding to the 1 vector, i.e., only
configurations with all nodes in the same location can be in
equilibrium.

Moreover, since Ω is positive semidefinite, system (5) is
globally and exponentially stable. We then claim that a for-
mation defined by the framework F = (G,P ) is stabilizable
using system (5), i.e., the formation asymptotically converges
to the solution space containing the equilibrium p given any
initialization. Note that the targeted equilibrium p can be
reached up to an affine transformation (hence its usefulness
for AFC), but can also be uniquely determined given a few
anchor nodes (which are commonly named leaders, e.g., in
[8]).

C. Problem Formulation

As discussed, the core element of the formation control
system (5) is the stress matrix with the following properties:

1) Ω is positive semidefinite (PSD);
2) Ω has rank N −D − 1;
3) Ω has rows of configuration P and 1N in the nullspace.

Given a configuration P , we seek a sparse stress matrix
satisfying the above properties representing a loosely con-
nected graph, while maximizing the system’s convergence rate.
In consensus theory, the second smallest eigenvalue of the
Laplacian governs convergence speed [12], as it determines
the slowest decaying component. Prior work has aimed to
maximize this eigenvalue for faster convergence [11]. Simi-
larly, for stress matrices, we aim to maximize the smallest
nonzero eigenvalue, i.e., the (D+2)-th smallest eigenvalue of
Ω or λD+2(Ω). We show later via numerical examples that
this goal can be traded off for graph sparsification.

III. NETWORK TOPOLOGY SPARSIFICATION

In this section, we first propose a preliminary formulation
directly related to the objectives and the constraints, which
turns out to be a non-convex problem. We then focus on con-
vexifying the formulation into a tractable convex optimization
and give insights into the formulation. Recall from (3) that
the stress matrix can be constructed using the graph incidence
matrix B given a stress vector ω. We initialize the graph as a
complete graph with an incidence matrix B̄ ∈ RN×M̄ where
there are M̄ = N(N−1)

2 edges. We then aim to find a sparse
vector ω̄ ∈ RM̄ such that Ω is sparse using (3), but using
the notation with bars. The effective number of edges from
the sparse vector Ω will be M = ∥ω̄∥0. Hence we pose the
following problem P0:

P0 : minimize
ω̄,Ω

∥ω̄∥0 − αλD+2(Ω) (6a)

subject to Ω = B̄ diag(ω̄)B̄⊤ (6b)
rank(Ω) = N −D − 1 (6c)
Ω ⪰ 0 (6d)

ΩP̄⊤ = 0 (6e)

where α is a weighting parameter, λD+2(Ω) is the smallest
nonzero eigenvalue of Ω, and P̄ = [P⊤,1N ]⊤ ∈ R(D+1)×N .
As can be observed, P0 is difficult to solve due to the L0-norm
and the rank constraint. In the next section, we convexify this
problem to a tractable semidefinite program (SDP).

A. Convexifying the Constraints

Assuming a full-rank P̄ , we letQ ∈ RN×(N−D−1) span the
kernel of P̄ with orthonormal columns. Then, (6c), (6d), and
(6e) imply that Q⊤ΩQ ∈ R(N−D−1)×(N−D−1) is a positive
definite (PD) matrix, since the null-subspace of Ω is projected
out by Q, i.e., Q⊤ΩQ ≻ 0. Further substituting (3), we have
Ψdiag(ω̄)Ψ⊤ ≻ 0, where Ψ = Q⊤B̄.

Substituting (3) into (6e), we have P̄ B̄ diag (ω̄)B̄⊤ =
P̄ B̄ diag (ω̄)

[
b̄1, ..., b̄N

]
= 0 where b̄i ∈ RM̄ ,∀i ∈ V

is the i-th column of B̄⊤. Observe that P̄ B̄ diag (ω̄)b̄i =
P̄ B̄ diag

(
b̄i
)
ω̄ = 0. As such, we can construct a matrix

E ∈ RN(D+1)×M̄ with the structure

E =

 P̄ B̄ diag
(
b̄1
)

...
P̄ B̄ diag

(
b̄N

)
, (7)

such that Eω̄ = 0, which can replace constraint (6e).

B. Eigenvalue Maximization

We now give an explicit expression for the maximization
of λD+2(Ω). Denoting ψ = diag

(
Ψ⊤Ψ

)
, we show that

maximizing ψ⊤ω̄ with a bounded ∥Ω∥2 is equivalent to the
eigenvalue maximization problem. To start, recollecting that
Q⊤ΩQ = Ψ diag(ω̄)Ψ⊤, we obtain

tr
(
Q⊤ΩQ

)
= tr

(
Ψdiag(ω̄)Ψ⊤) = tr

(
Ψ⊤Ψdiag(ω̄)

)
(8)

= tr
(
diag

(
Ψ⊤Ψ

)
ω̄
)
= ψ⊤ω̄.

Hence, the sum of the eigenvalues of the PD matrix Q⊤ΩQ,
or equivalently the PSD matrix Ω (since Q has orthonormal
columns), can be represented by ψ⊤ω̄ where ψ is known.
Then if we use an additional constraint ∥Ω∥2 ≤ β where
we limit the largest eigenvalue of Ω to β > 0, λD+2(Ω) is
maximized when λD+2(Ω) = ... = λmax(Ω) = β and the
condition number κ(Ω) is minimized to 1 at the same time.
This eigenvalue maximization is guaranteed when there are
no other objectives and constraints and will play as a relax-
ation under our proposed constrained formulation. It is worth
mentioning that trace regularization is also commonly seen in
network design literature such as [11]. Additionally, although
we do not emphasize the minimization of the condition number
in this work, it is shown in [16] that such minimization can
improve the robustness of AFC against time delays.

C. Proposed Framework

A common convex relaxation is that of the L0-norm to
an L1-norm for sparsity, i.e., ∥ω̄∥0 to ∥ω̄∥1 in the objective.
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(a) configuration

M = 24

(b) Yang et al.

M = 18

(c) Lin et al.

M = 15

(d) proposed, α = 0.5

M = 35

(e) proposed, α = 1.5

M = 45

(f) proposed, α = 5

Fig. 2. Resulting graphs of our proposed solutions compared with the state-of-the-art. A 10-node regular polygon has a maximum of M̄ = 45 edges. The
recommended value of α for a sparse solution is 1/∥ψ∥∞ = 0.51. The structure from [13] is used for Lin et al.

Finally, by combining all the convexified constraints and the
objectives above, we present our proposed formulation P1

P1 : minimize
ω̄

∥ω̄∥1 − αψ⊤ω̄ (9a)

subject to Ψdiag(ω̄)Ψ⊤ − γIN−D−1 ⪰ 0 (9b)∥∥B̄ diag(ω̄)B̄⊤∥∥
2
≤ β (9c)

Eω̄ = 0 (9d)

where α > 0 is the weighting parameter of the objectives and
β > 0 upper bounds the spectral norm of Ω. We also set a
lower bound γ > 0 for (9b) for two explicit reasons, (a) a strict
positive definite constraint Ψ diag(ω̄)Ψ⊤ ≻ 0 is numerically
infeasible, and (b) when the L1 term is dominating, we want
to avoid obtaining the trivial solution ω̄ = 0.

As a summary of the proposed formulation, with the help of
(6e), constraints (6c) and (6d) in P0 are convexified using (9b),
and (6e) itself is rewritten with (9d) using only the variable ω̄.
Constraint (9c) combined with the objective (8) achieves the
eigenvalue maximization. We now investigate the relationships
among these hyperparameters in the following section.

D. Choice of Hyperparameters

The need for β > γ is straightforward to ensure feasibility
since they represent the largest and smallest eigenvalues,
respectively. Additionally, β and γ should be sufficiently
apart for a relatively large feasible region. The choice of α
determines the objective function, which contains a sparsity
term ∥ω̄∥1 (geometrically a cone) and a convergence term
−αψ⊤ω̄ (a hyperplane). If the convergence term is dominant,
i.e., α is large, the hyperplane will unfold the cone such that
its global minimum vanishes, in which case the solution is
minimized at the boundary of the feasible region which is
not necessarily a sparse solution. Mathematically, to keep the
global minimum of the objective function, 0M̄ should be in
the subdifferential of the objective function, i.e.,

0M̄ ∈ ∂
(
∥ω̄∥1 − αψ⊤ω̄

)
, (10)

which directly yields that all elements of αψ are in the range
(−1, 1). Recalling that all elements of ψ are nonnegative from
the definition ψ = diag

(
Ψ⊤Ψ

)
and α > 0, we conclude that

the choice of α that entails a sparse solution is

0 < α <
1

∥ψ∥∞
, (11)

where the infinity norm is the largest value of ψ. Since a
larger α promotes faster convergence, we recommend using
the upper bound value of (11) before fine-tuning. If α is chosen
substantially beyond the range (11), then the sparsity is traded
off for the convergence rate, which we will illustrate in the
next section.

IV. SIMULATIONS

In this section, we validate our proposed framework through
several examples, comparing its performance with state-of-the-
art methods such as Lin et al. [14], Xiao et al. [16], and
Yang et al. [15]. We demonstrate the effect of varying the
hyperparameter α, with a fixed β = 1 and γ = 0.1. Since the
approach in [14] is not generative and requires a predefined
graph, we first apply some sparse graph construction technique
[13], [10] to generate an appropriate structure before designing
the stress, which is a widely adopted pipeline for AFC works.
It is obvious from (1) and (4) that stress has a scaling
ambiguity, hence a scalar gain could amplify the smallest
nonzero eigenvalue for an accelerated convergence. However,
for a fair comparison of the convergence rate, we normalize all
the acquired stress matrices for a maximum eigenvalue of 1.
The code for the simulations is available online 1, in which we
used CVXPY [20] to solve the proposed convex optimization.

Our main test case is a nongeneric regular polygon with 10
nodes in R2 shown in Fig. 2(a), a common geometric pattern
in, e.g., antenna arrays for maximizing aperture. The optimized
graphs are shown in Fig. 2 where all methods yield a sparsified
solution compared with a complete graph, among which our
proposed solution offers the least required edges under the
right α setting (11). Also, the resulting graph becomes denser
with a larger α, which substantiates our previous discussion
that the optimal solution will fall on the border of the feasible
region. Besides, it is also consistent with the intuition that
the sparsity term in (9a) is less dominant with a larger α, so
a less sparse solution is achieved. Another observation from
the results is that the proposed framework gives symmetric
solutions as compared to the state-of-the-art works, which is a
key benefit for robustness and for balancing the network load.
This is because the proposed framework does not assume any
sparsity pattern like [15] or [13], although symmetry is not
explicitly enforced.

1https://github.com/asil-lab/zli-sparse-urf
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t[s]

δ(t)

Yang et al.

Lin et al.

proposed, α = 0.5

proposed, α = 1.5

proposed, α = 5

Fig. 3. The convergence of the formation control system (left). The tracking
error is δ(t) = ∥z(t)− p∥2. The normalized eigenvalues of the stress
matrices (right). The 7th eigenvalue corresponds to the error convergence
speed. Lin et al. is designed over graph Fig. 2 (c).

The convergence of our proposed solution is shown in
Fig. 3. We compare the eigenvalues of the acquired stress
matrix with the resulting convergence of formation control.
When α is tuned to a larger value, the smallest nonzero
eigenvalue and the convergence speed are promoted. The
extreme case is α = 5, where all nonzero eigenvalues are
maximized to 1 at the cost of a full connection among nodes
in Fig. 2(f). This confirms that the denser the connections, the
more efficiently information is spread in the network hence
a faster convergence. It is worth noting that our most sparse
solution, i.e., α = 0.5, still outperforms the existing works.

The generic example from [16] is shown in Fig. 4 where
there are 6 nodes in R2. All compared methods present a
reduced number of edges from a maximum of M̄ = 15
and the proposed technique can reach the lower bound M =
2N − 2 = 10 for generic configurations [13]. Additionally,
the proposed solution entails the highest λ4(Ω), which is the
smallest nonzero eigenvalue.

V. CONCLUSION

In this work, we formulated the stress matrix design for a
universally rigid framework as a convex optimization problem,
aiming to minimize the number of edges required for network
connectivity while enhancing convergence speed. We provided
insights into the selection of hyperparameters, and numerical
results demonstrated that our method outperforms existing
approaches in both sparsity and convergence speed across
our test cases. In future work, we plan to benchmark our
solution across broader scenarios with more evaluation criteria
such as control energy. We also aim to incorporate additional
constraints, such as distance constraints and balanced load
distribution, to refine our network design further.
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