
Graph Sampling for Scalable and Expressive Graph
Neural Networks on Homophilic Graphs

Haolin Li, Haoyu Wang, Luana Ruiz
Department of Applied Mathematics and Statistics, Johns Hopkins University

{hli230, hwang320, lrubini1}@jh.edu

Abstract—Graph Neural Networks (GNNs) excel in many
graph machine learning tasks but face challenges when scal-
ing to large networks. GNN transferability allows training on
smaller graphs and applying the model to larger ones, but
existing methods often rely on random subsampling, leading
to disconnected subgraphs and reduced model expressivity. We
propose a novel graph sampling algorithm that leverages feature
homophily to preserve graph structure. By minimizing the trace
of the data correlation matrix, our method better preserves the
graph Laplacian trace—a proxy for the graph connectivity—than
random sampling, while achieving lower complexity than spectral
methods. Experiments on citation networks show improved per-
formance in preserving Laplacian trace and GNN transferability
compared to random sampling.

Index Terms—graph signal processing, graph sampling, graph
neural networks, transferability, homophily.

I. INTRODUCTION

GNNs are deep neural networks tailored to network data
which have shown great empirical performance in several
graph machine learning tasks [1]–[4]. This is especially true
in graph signal processing problems—such as recommender
systems on product similarity networks [5], or attribution of
research papers to scientific domains [6]—in which GNNs’
invariance and stability properties [7], [8] play a key role.

Yet, in practice most successful applications of GNNs are
limited to graphs of moderate size. The sheer size of many
modern networks, typically in the order of several millions,
frequently makes these models impractical to train. Good
results have been seen by leveraging the GNN’s transferability
property [9], [10], which states that a GNN with fixed weights
produces similar outputs on large enough graphs belonging to
the same “family”, e.g., the same random graph model. This
property allows training the GNN on a graph of moderate size,
and transferring it for inference on the large graph.

The transferability of GNNs is closely related to their
convolutional parametrization, and is a consequence of graph
convolutions converging on sequences of graphs that converge
to a common graph limit [11]. Under certain assumptions on
the type of limit, and on how the graphs converge to (or are
sampled from) them, it is possible to obtain non-asymptotic
error bounds inversely proportional to the sizes of the graphs.
Such bounds are then used to inform practical considerations,
such as the minimum graph size on which to train a GNN to
meet a maximum transference error. Once this is determined,
the training graph is obtained by sampling a subgraph of the
appropriate size at random from the large graph.

Learning GNNs on randomly subsampled graphs works
reasonably well on average but, for models trained on small
samples, there is large variance in performance, and the worst-
case performance can be quite low; see Figure 3. While this
is a natural consequence of subsampling any type of data,
on graphs issues are exacerbated by the fact that random
subgraphs often have disconnected components and isolated
nodes. This leads to rank reduction in graph matrix representa-
tions, which in turn affects the expressive power of GNNs [12].
Indeed, the loss of rank is explicit for the graph Laplacian,
in which the multiplicity of the zero eigenvalue indicates the
number of connected components in the graph.

Sampling algorithms better at preserving matrix rank—such
as spectral algorithms, e.g. [13], [14]—or connectivity—such
as local algorithms, e.g., breadth-first search [15]—exist, how-
ever, spectral methods have high computational complexity,
and local methods focus too much on specific regions of the
graph and fail to capture global structure.

In this paper, we identify a property that allows graphs to be
sampled efficiently without restricting to local regions: feature
homophily. Specifically, let G = (V,E) be a graph with node
features X ∈ R|V |×d. This graph is feature-homophilic if,
given that (i, j) is an edge in G, the normalized features X̂[i, :]
and X̂[j, :] are close. Our first contribution is to introduce
a novel definition of feature homophily based on the graph
Laplacian. Then, we show that, by sampling nodes to minimize
the trace of the correlation matrix XXT , it is possible to
improve the trace of the graph Laplacian, which provides a
measure of connectivity of the subsampled graph.

This heuristic is formalized as a graph sampling algorithm
in Algorithm 1. Unlike other graph sampling routines, it does
not require sequential node operations, and has complexity
O(d|E|), which is substantially cheaper than other algorithms
for large |V | and moderate d.

We conclude with an experimental study of the proposed
algorithm on homophilic citation networks, in which we
compare it with random sampling. We observe that, for the
same sampling budget, our algorithm preserves trace better
than sampling at random, and leads to better transferability
performance in a semi-supervised learning task.

II. PRELIMINARIES

A graph G = (V,E) consists of two components: a set of
vertices or nodes V , and a set of edges E ⊆ V ×V . Generally,

2397ISBN: 978-9-46-459362-4 EUSIPCO 2025

Algorithm 1 Node Sampling for Feature-Homophilic Graphs
Require: G(V,E), |V | = n; X ∈ Rn×d; γ ∈ [0, 1]

Calculate deletion budget: nd ← ⌊(1− γ) · n⌋
Calculate node scores: s⃗← diag(XXT)
Keep n− nd nodes with the lowest scores:

idx← argmax(s⃗, descending = True)[nd : n]
Sample graph:

Ṽ ← V ∩ idx
Ẽ ← {(u, v) : u, v ∈ Ṽ , (u, v) ∈ E}
X̃ ← X[idx, :]

return G̃(Ṽ , Ẽ); X̃

graphs can be categorized as being either directed or undi-
rected based on their edge set E. A graph is undirected if and
only if for any two nodes u, v ∈ V , (u, v) ∈ E also implies
(v, u) ∈ E (and both correspond to the same undirected edge).
In this paper, we restrict attention to undirected graphs.

Let |V | = n be the number of nodes and |E| = m be the
number of edges in G. Let A ∈ Rn×n be the corresponding
adjacency matrix. The graph Laplacian is defined as L = D−
A, where D = diag(A1n) is the so-called degree matrix.
From their definitions, and since G is undirected, we can easily
infer that A and L are symmetric.

In practice, real-world graphs are associated with node data
x ∈ Rn called graph signals, where x[i] corresponds to the
value of the signal at node i. More generally, graph signals
consist of multiple features, in which case they are represented
as matrices X ∈ Rn×d with d denoting the number of features.

The graph Laplacian plays an important role in graph signal
processing (GSP) [16], [17], as it allows defining the notion
of total variation of a signal x. Explicitly, the total variation
of x is defined as TV (x) = xTLx [18]. Let L = VΛVT

be the Laplacian eigendecomposition, where Λ is a diagonal
matrix with eigenvalues ordered as λ1 ≤ . . . ≤ λn and V is
the corresponding eigenvector matrix. For unit-norm signals,
it is easy to see that the maximum total variation is λn, the
largest Laplacian eigenvalue, and the minimum total variation
is λ1 = 0, which corresponds to the all-ones eigenvector.
Therefore, the Laplacian eigenvalues can be interpreted as
graph frequencies, and the eigenvectors as these frequencies’
respective oscillation modes.

A. Graph Neural Networks

GNNs are deep learning models specifically designed for
graph-structured data, where each layer consists of two compo-
nents: a bank of convolutional filters and a nonlinear activation
function. A graph convolutional filter is the extension of a
standard convolutional filter to graph data. More specifically,
it consists of a shift-and-sum operation of a signal x on the
graph G, which is captured by a matrix S ∈ Rn×n encoding
the sparsity pattern of the graph, i.e., S[i, j] ̸= 0 if and only
if (i, j) ∈ E or i = j; typical choices are S = A or S = L
[19]. The graph shift operator operates on x as Sx.

Given any choice of S, the graph convolution is defined
as y =

∑K−1
k=0 hkS

kx, where h0, . . . , hK−1 are the filter

coefficients or taps. More generally, for X ∈ Rn×d and
Y ∈ Rn×f we can define the convolutional filterbank [4]

Y =

K−1∑
k=0

SkXHk (1)

where Hk ∈ Rd×f , 0 ≤ k ≤ K − 1.
The ℓth layer of a GNN is given by [4]

Xℓ = σ

(K−1∑
k=0

SkXℓ−1Hℓk

)
(2)

with σ : R → R an entry-wise nonlinearity (e.g., the ReLU
or sigmoid). At layer ℓ = 1, X0 is the input data, and the last
layer output XL is the output Y of the GNN. For succinctness,
in the following we will represent the whole L-layer GNN as
a map Y = Φ(X,G;H) with H = {Hℓk}ℓ,k.

B. Transferability of GNNs

The mathematical property that allows training GNNs on
small graph subsamples of larger graphs is their transferability.
Explicitly, GNNs are transferable in the sense that when a
GNN with fixed weights H is transferred across two graphs in
the same “family”, the transference error is upper bounded by a
term that decreases with the graph size. Typical transferability
analyses show this by defining graph “families” as graphs
coming from the same random graph model, or converging to
a common graph limit. Here, we consider families of graphs
identified by the same graphon, which can be seen as both a
generative model and a limit model for large graphs.

A graphon is a bounded, symmetric, measurable function
W : [0, 1]2 → [0, 1] [20], [21]. Graphs can be sampled from
W by sampling nodes u1, . . . , un from [0, 1], and sampling
edges (ui, uj) with probability W(ui, uj). The graph limit
interpretation is more nuanced but has to do with the fact
that, on sequences of graphs converging to W, the densities
of certain “motifs”, e.g., triangles, also converge. For graphs
associated with the same graphon, we have the following
transferability theorem.

Theorem II.1 (GNN transferability, simplified [22]). Let Φ be
a GNN with fixed coefficients, and Gn, Gm graphs with n and
m nodes sampled from a graphon W. Under mild conditions,
∥Φ(Gn)− Φ(Gm)∥ = O(n−1 +m−1) w.h.p.

In this paper, we will use the transferability property of
GNNs, together with a novel graph sampling algorithm, to
train GNNs on small graph subsamples and ensure they scale
well to large graphs.

C. Expressive Power of GNNs

While GNNs achieve remarkable performance in many
graph machine learning tasks, they have fundamental limita-
tions associated with their expressive power [23], [24]. In GSP
problems specifically, the expressivity of a GNN is constrained
by the expressivity of the graph convolution, which in turn is
constrained by the rank of the graph shift operator [12]. This
is demonstrated in the following proposition.

2398

Fig. 1. Adjusted Laplacian trace versus graph subsampling rate. The adjusted trace is the subsampled graph Laplacian trace normalized by the number of
sampled nodes. Boxplots indicate the mean and standard error of the trace obtained from 50 rounds of random node subsampling; red dots are the trace of
subgraphs generated using our sampling heuristic (Algorithm 1). Trace preservation is almost always better for our algorithm compared with the average of
random subsampling, except for Cora at 75% sample rate.

Fig. 2. Example of randomly sampled subgraph (green) and subgraph sampled
using Algorithm 1. Both graphs have 800 nodes and were sampled from the
PubMed citation network, which has 19,717 nodes.

Proposition II.2 (Expressivity of Graph Convolution). Let
G be an n-node symmetric graph with rank-r graph shift
operator S, r < n, and x ∈ Rn an arbitrary graph signal.
Consider the graph convolution ŷ =

∑K−1
k=0 hkS

kx. Let
Y ⊂ Rn be the subspace of signals that can be expressed
as y = ŷ for some h0, . . . , hK−1. Then, dim(Y) ≤ r + 1.

Proof. See the extended version, available here.

In other words, the space of signals that can be represented
with a graph convolution shrinks with the rank of the graph
shift. Rank preservation is thus an important consideration
when sampling subgraphs for GNN training. We will focus
on the more tractable problem of preserving the Laplacian
trace, which can be seen as a continuous proxy of its rank.

III. FEATURE HOMOPHILY AND HOMOPHILY-BASED
SAMPLING

We start by introducing the notion of feature homophily.
In order to make this definition compatible for graphs of
different sizes and with different features features, we first
need to normalize X ∈ Rn×d along both the feature and
node dimensions. Explicitly, let µ⃗ = (µ1, · · · , µd)

T ∈ Rd

be the mean feature vector and σ⃗ = (1
σ1
, · · · , 1

σd
)T ∈ Rd

the standard deviation vector. We define the normalized graph
feature matrix as:

X̂ = (X − 1nµ⃗
T)⊙ (

1√
d
· 1nσ⃗

T). (3)

I.e., X̂[i, j] =
X[i,j]−µj√

dσj
.

Definition III.1 (Feature Homophily). Let G be a graph
with Laplacian matrix L, and let X̂ be the corresponding
normalized feature matrix (3). The feature homophily of graph
G is defined as:

hG =
1

n
· tr(−LX̂X̂T). (4)

Since L is positive semidefinite and the trace of the outer
product is the product of traces, it is ready to see, by Cauchy-
Schwarz, that hG ≤ 0 for any undirected graph G. The
larger the feature homophily hG, i.e., the closer it is to 0,
the higher the alignment of the data X (or, more precisely, of
its principal components) with the low-frequency eigenvectors
of L—which account for most of the graph’s global structure
such as its connected components and clusters/communities.
Thus, the data is informative with regards to the graph. On
the other hand, highly negative values of hG indicate strong
alignment of X̂ with high-frequency eigenvectors, which tend
to be noisier and less descriptive of the graph structure.

The following proposition provides a lower bound on tr(L)
in terms of the feature homophily hG.

Proposition III.2 (Lower Bound on tr(L)).

tr(L) ≥ − nhG

tr(X̂X̂T)
(5)

Proof. See the extended version, available here.

Note that if the graph G has high feature homophily, the
right-hand side of (5) is small and the lower bound on tr(L) is
approximately vacuous. For heterophilic graphs, hG has higher
magnitude, so the lower bound is further away from zero.

2399

Fig. 3. Test accuracy achieved by GNN on full graph versus training graph subsampling rate. Boxplots indicate the spread of the accuracy realized by GNNs
trained on 50 random node-induced subgraphs; red dots are the test accuracy of GNNs trained on subgraphs produced by our heuristic (Algorithm 1). The
feature-based heuristic yields better results across the board, except for CiteSeer at 25% sample rate.

A. Sampling Heuristic for Homophilic Graphs

Although simple, the result in Proposition III.2 has im-
portant implications for feature-homophilic graph sampling.
Assume we start removing nodes from G according to the
diagonal entries of XXT sorted in decreasing order, so that
the denominator on the right-hand side of (5) becomes progres-
sively smaller. We prioritize removing nodes corresponding to
the largest diagonal elements because, in order to tighten the
lower bound of tr(L), we should enforce the denominator
tr(X̂X̂T)2 to be as small as possible, given that the graph
is homophilic. Hence, deleting from largest to smallest makes
sense. This idea is formalized in Algorithm 1.

When d < n, as is often the case in practice, Algorithm
1 offers lower computational complexity than graph sampling
algorithms which mazimize the graph Laplacian trace directly,
as demonstrated by Proposition III.3.

Proposition III.3 (Complexity of Algorithm 1). Let G =
(V,E) be a graph with |V | = n and |E| = m, and let
X ∈ Rn×d be the corresponding node feature matrix. For any
sampling budget γ, the complexity of Algorithm 1, including
computation of hG, is O(dm). If G is known to be feature-
homophilic, computation of hG can be bypassed and the
complexity simplifies to O(dn).

Proof. See the extended version, available here.

Importantly, the complexity of Algorithm 1 is dominated
by the complexity of calculating the feature homophily, which
only has to happen once prior to execution to determine if the
graph is homophilic. The complexity is further independent of
the sampling budget, as the diagonal elements of XXT only
have to be computed and sorted once.

On sparse graphs (m ≪ n2) with moderate feature di-
mension d, Algorithm 1 is cheaper than direct maximization
of tr(L), which requires O((1 − γ)n2) computations—O(n)
node degree computations (1 − γ)n times, as node degrees
change each time a node is removed from G. In fact, this
is an underestimation, as it does not factor in the cost of
breaking ties across nodes with the same degree. Algorithm 1
is also notably cheaper than spectral algorithms such as [13],
[14] which are inspired by E-optimal sampling and, without

exhaustive search, require greedy routines with complexity at
least O(γnm). Another advantage of Algorithm 1 is that it
does not require sequential execution, unlike maximization of
tr(L) and [13], [14], which cannot be parallelized.

B. Connections with Orthogonality, Leverage Scores Sam-
pling, and Further Discussion

Our feature homophily definition provides insights into
graph alignment and orthogonality. More specifically, hG can
be interpreted as an inner product between the Laplacian L and
the feature correlation matrix X̂X̂T . High homophily (i.e.,
hG ≈ 0) implies that the graph Laplacian and the feature
correlation matrix are almost orthogonal.

The feature homophily score can also be rewritten as a
weighted ℓ1-norm of the adjacency matrix, where the weight
of each edge Aij is the squared Euclidean distance between
feature vectors Xi and Xj [25]. This formulation connects
homophily with graph sparsity, suggesting that our sampling
heuristic could serve as a structured sparsification technique
for large-scale graphs similar to graph sparsification techniques
based on effective resistances [26].

The sampling method we propose in Algorithm 1 has inter-
esting connections with leverage scores sampling approaches
used in regression models. In classical settings, leverage
scores quantify the influence of data points on the regression
outcome. However, unlike traditional leverage score sampling,
which retains influential, high-leverage points, our approach
removes the nodes with the largest scores.

To formalize this connection, recall that leverage scores
sampling is based on the diagonals of the hat matrix H =
X(XTX)+XT . Since H is positive semidefinite, its diagonal
is always nonnegative. Using the singular value decomposition
(SVD) of X , X = UΣV T , we can decompose the hat
matrix as H = UΣV T (V Σ2V T)+V ΣUT = UrU

T
r , thus the

images of both X and H lie in the span of U . Examining
the diagonal of XXT = UΣ2UT , we observe that the node
scores computed in our algorithm are effectively leverage
scores weighted by the singular values of X . Our approach
removes nodes that contribute disproportionately to the feature
covariance structure, regularizing the selection.

This criterion aligns with the goal of preserving Laplacian
rank: since the multiplicity of the zero eigenvalue counts the

2400

number of connected components, removing nodes that form
separate components or have low connectivity minimally af-
fects the overall structure. Specifically, if a graph initially has n
nodes and k connected components (so that rank(L) = n−k),
removing an isolated node decreases both n and k by one,
preserving the rank at n − k. This suggests that our method
implicitly filters out nodes that contribute little to the global
structure while retaining the essential connectivity properties
of the original graph.

IV. EXPERIMENTAL RESULTS

In this section, we present an empirical analysis of our
sampling algorithm on citation networks. Specifically, we
compare the test accuracy achieved by GNN models trained on
subgraphs sampled using our heuristic and the random node
sampling baseline on the full size graph.
Trace preservation. First, we investigate the ability of our
heuristic to preserve Laplacian trace in three homophilic
citation networks. In agreement with the lower bound derived
in Proposition III.2, in Figure 1 we see that across all datasets,
our sampling method results in subgraphs with larger adjusted
t̃r(L) = tr(L)/n. This pattern is especially visible for
PubMed, as exemplified by the 800-node subsamples in Figure
2. Clearly, the graph sampled using Algorithm 1 is more
connected than its random counterpart.
GNN training. Next, we investigate the transferability of
GNNs trained on subgraphs sampled using our heuristic and
subgraphs and random node-induced subgraphs. Specifically,
we train a GNN model on graphs of size given by the x-axis of
Figure 3, and report their test accuracy on the full size graph.
Experiment details. For each dataset and sample rate, we
chose hidden dimension in {64, 128}, number of layers in
{1, 2, 3}, number of epochs in {200, 300}, learning rate
and weight decay in {0.001, 0.0001}, GCN model type in
{GCN,SAGE} with ReLU activations, all optimized using
Adam [27]. All of the graphs are symmetrized beforehand,
turning directed edges into undirected ones.

In Figure 3, the box plots represent the mean and standard
error of the accuracy achieved over 50 rounds, and the red
dots the test accuracy achieved by our model. Our sampling
heuristic is substantially better, except for CiteSeer at sample
rate 25%. Notably, at a sample rate of 62.5%, our heuristic
beat random by around 10% for all three datasets.
Acknowledgements. We thank Gonzalo Mateos for insightful
comments on the connections of our method with graph
orthogonality and leverage scores sampling.

REFERENCES

[1] Marco Gori, Gabriele Monfardini, and Franco Scarselli, “A new model
for learning in graph domains,” in Proceedings. 2005 IEEE international
joint conference on neural networks, 2005. IEEE, 2005, vol. 2, pp. 729–
734.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th Int. Conf. Learning Representations,
Toulon, France, 24-26 Apr. 2017, Assoc. Comput. Linguistics.

[3] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Neural Inform. Process. Syst., Barcelona, Spain, 5-10 Dec. 2016, NIPS
Foundation.

[4] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional
neural network architectures for signals supported on graphs,” IEEE
Trans. Signal Process., vol. 67, pp. 1034–1049, 2018.

[5] L. Ruiz, F. Gama, and A. Ribeiro, “Graph neural networks: Architec-
tures, stability and transferability,” Proc. IEEE, vol. 109, no. 5, pp.
660–682, 2021.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec, “Inductive repre-
sentation learning on large graphs,” Advances in neural information
processing systems, vol. 30, 2017.

[7] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Invariance-
preserving localized activation functions for graph neural networks,”
IEEE Trans. Signal Process., vol. 68, pp. 127–141, 2020.

[8] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural
networks,” IEEE Trans. Signal Process., vol. 68, pp. 5680–5695, 2020.

[9] L. Ruiz, L. F. O. Chamon, and A. Ribeiro, “Graphon neural networks
and the transferability of graph neural networks,” in 34th Neural Inform.
Process. Syst., Vancouver, BC (Virtual), 6-12 Dec. 2020, NeurIPS
Foundation.

[10] R. Levie, W. Huang, L. Bucci, M. Bronstein, and G. Kutyniok, “Trans-
ferability of spectral graph convolutional neural networks,” J. Mach.
Learning Res., vol. 22, no. 272, pp. 1–59, 2021.

[11] L. Ruiz, L. F. O. Chamon, and A. Ribeiro, “Graphon signal processing,”
IEEE Trans. Signal Process., vol. 69, pp. 4961–4976, 2021.

[12] Luana Ruiz, Ningyuan Teresa Huang, and Soledad Villar, “A spectral
analysis of graph neural networks on dense and sparse graphs,” in
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2024, pp. 9936–9940.

[13] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, pp. 6510–6523, 2015.

[14] Aamir Anis, Akshay Gadde, and Antonio Ortega, “Efficient sampling
set selection for bandlimited graph signals using graph spectral proxies,”
IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3775–3789,
2016.

[15] Yeganeh Alimohammadi, Luana Ruiz, and Amin Saberi, “A local graph
limits perspective on sampling-based gnns,” 2023.

[16] D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[17] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, pp. 1644–1656, Apr.
2013.

[18] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[19] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, pp. 4117–4131, Aug. 2017.

[20] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi,
“Convergent sequences of dense graphs i: Subgraph frequencies, metric
properties and testing,” Adv. Math., vol. 219, no. 6, pp. 1801–1851,
2008.

[21] L. Lovász, Large Networks and Graph Limits, vol. 60, American
Mathematical Society, 2012.

[22] L. Ruiz, L. F. O. Chamon, and A. Ribeiro, “Transferability properties
of graph neural networks,” arXiv:2112.04629 [eess.SP]. Submitted to
IEEE TSP, 2021.

[23] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?,” in 7th Int. Conf. Learning Representations, New
Orleans, LA, 6-9 May 2019, pp. 1–17, Assoc. Comput. Linguistics.

[24] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna, “On the
equivalence between graph isomorphism testing and function approxi-
mation with gnns,” Advances in neural information processing systems,
vol. 32, 2019.

[25] Vassilis Kalofolias, “How to learn a graph from smooth signals,” in Pro-
ceedings of the 19th International Conference on Artificial Intelligence
and Statistics (AISTATS). PMLR, 2016, pp. 920–929.

[26] Daniel A. Spielman and Nikhil Srivastava, “Graph sparsification by
effective resistances,” SIAM Journal on Computing, vol. 40, no. 6, pp.
1913–1926, 2011.

[27] D. P. Kingma and J. L. Ba, “ADAM: A method for stochastic
optimization,” in 3rd Int. Conf. Learning Representations, San Diego,
CA, 7-9 May 2015, Assoc. Comput. Linguistics.

2401

