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Abstract—The efficient management of water resources is
crucial in today’s society, as growing populations, climate change,
and increasing water scarcity demand improved monitoring and
assessment of Water Distribution Networks (WDNs). In this
paper, we propose a dynamic model for the analysis of water
flow in WDNs that accounts for key real-world factors, such as
water demands and leakages, with the ultimate goal of leakage
detection. Traditional monitoring approaches struggle with the
complexity of WDNs, particularly when relying on limited sensor
data. To address this challenge, we leverage Topological Signal
Processing (TSP) to model and analyze water flow as high-order
signals defined on the edges of higher-order topological structures
such as cell complexes. By incorporating these higher-order
topological structures, we develop a learning-based approach to
reconstruct the dynamics of the water flows from observations
of a reduced number of sensors. Then, we propose an anomaly
detection algorithm designed to precisely identify leakages by
formulating an optimization problem that minimizes the recovery
error to detect sparse leakages. Performance results demonstrate
the effectiveness of topological-based learning for efficiently
monitoring water distribution network leakages.

Index Terms—Topological signal processing, water distribution
networks, anomaly detection.

1. INTRODUCTION

The growing global challenge of water scarcity, caused
by climate change and increasing population demands, un-
derscores the urgent need for efficient water monitoring and
leak detection in Water Distribution Networks (WDNs) [1],
[2]. Identifying leaks is particularly challenging in realistic
scenarios, where sensor coverage is limited and direct flow
measurements across the entire network are not available [3],
[4]. The complexity of WDNSs, combined with the variabil-
ity in data collection methods, further complicates the task,
making traditional monitoring approaches—such as manual
inspections or simplified models—inefficient, labor-intensive,
and prone to inaccuracies [5]. Developing methods that enable
accurate leak detection with sparse sensor data is therefore
essential to ensure a sustainable and reliable water supply.

To address this challenge, data-driven methods have been
explored for leak detection in WDNSs. These approaches,
often based on machine learning and graph neural networks,
leverage historical data to identify patterns associated with
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anomalies [6], [7]. However, their applicability and effec-
tiveness are limited by the high computational cost and the
need for large labeled datasets for training, which are not
always available in the context of WDNs. In contrast, model-
based approaches have shown promising results in identify-
ing network anomalies by leveraging physical principles and
mathematical models to estimate water flow and pressure [8].
These methods, however, often lack the capability to precisely
localize leaks within the network, which is a critical limitation
for effective usability in WDNSs.

In this paper, we introduce a novel dynamic model for
WDNs based on Topological Signal Processing (TSP) a tool
to describe and process signals defined over high-order net-
works [9], [10]. While traditional Graph Signal Processing
(GSP) techniques represent signals on graph nodes and cap-
ture pairwise interactions between nodes [11], TSP extends
this framework by enabling the analysis of signals on more
intricate topological structures, such as cell complexes [9],
[12]. This higher-order data representation allows for a richer
characterization of network dynamics, making it particularly
suitable for applications where interactions extend beyond
direct node-to-node connections [13].

Here, we propose a dynamic model for real-time mon-
itoring of WDNs for leak detection. This model extends
the capability of static approaches by incorporating temporal
dynamics into the analysis, allowing for the characterization of
transient water demands and persistent leakages. In addition,
cost limitations and the inaccessibility of certain locations
often restrict the number and placement of sensors, preventing
the widespread deployment of IoT devices. Consequently, it
is essential to reconstruct the flow signals in unmeasured
locations [4], [14] and, for this aim, we adopt graph sampling
theory [15]. Therefore, we reconstruct the edge signals from a
subset of observed samples and we formulate an optimization
problem to detect water leakages. We test our method on
simulated WDNs with water demands and random leakages,
and we demonstrate that it is able to reconstruct the flow across
the entire network and accurately detect leakages.

II. TOPOLOGICAL SIGNAL PROCESSING FOR WDNS

In this section, we provide an overview of TSP tools [9],
[10], which serve as bases for developing a dynamic topology-
based model for water flows in WDNs.
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A graph G = (V,£) can be simply associated with a water
distribution network, with V = {v;,...,vny} the set of N
nodes and € = {e;;}; jev the set of E edges. The generic
e;; is equal to 1, if there is a link (a pipe) connecting node
¢ and node j, otherwise it is 0. An important matrix used to
extract fundamental properties of the graph is the Laplacian
matrix, which can be written as Ly = BlB{ with B; the
N x E incidence matrix of the graph G. More specifically,
given an orientation of the edges of the graph, the entries of
B, are defined as Bi(i,j) = 0 if ¢;; = 0, By(¢,7) = 1 if
node ¢ is the tail of the edge e;; and By (i, j) = —1 if node %
is instead the head of e;;.

Graphs are simple topological spaces that are able to capture
pairwise relations between data associated with their vertices
through the presence of edges. To incorporate higher-order
relationships that may exist among data associated with the
edges of a graph, like flow data, higher-order topological
spaces, such as simplicial or cell complexes, need to be
considered. Topological Signal Processing (TSP) has recently
been introduced to analyze and process signals defined over
simplicial and cell complexes [9], [10], [12].

A cell complex C is composed of a set of abstract elements,
known as cells, characterized by a bounding relationship
and a dimension function, which fulfill the transitivity and
monotonicity properties [9]. A cell of dimension n is referred
to as an n-cell: vertices correspond to 0-cells, edges to 1-cells,
and polygons of any order are classified as 2-cells.

The boundary of an n-dimensional cell consists of all lower-
dimensional cells that define its enclosure. A cell complex C
is considered K-dimensional if the highest dimension among
its cells does not exceed K. Under these definitions, simplicial
complexes can be seen as a specialized class of cell complexes,
where each k-cell is formed by exactly k + 1 vertices. The
structure of C is typically described through its incidence
matrices, which capture the relationships between k-cells and
the corresponding (k—1)-cells. The concept of orientation in C
incorporates both the orientation of individual cells and their
incidence relationships [9]. Let cf represent the i-th cell of
order k. If ¢F~% <, ¥, we say that ¢F ' is lower incident
to cé?. Two k-order cells are considered lower adjacent if
they share a common (k — 1)-dimensional face, whereas they
are upper adjacent if they both serve as faces of a (k + 1)-
dimensional cell. Defining an orientation of C, its structural
relationships up to order K are fully described by the set of
incidence matrices By, for £k = 1, ..., K. These matrices, also
called boundary matrices, encode the connectivity between k-
cells and their corresponding (k — 1)-cells. They are formally
defined as:

0, if cf_l Ab c?
By(i,j) = 1, ifef ™ <y cFandcf T~ b (D)
-1, if cf_l < cé? and cf‘l o ck
k= in the case of aligned

We use the notation ¢
orientations of cf ™' and ¥, whereas ¢/ ™' ~ ¢ in case of

opposite orientations. To characterize the K -dimensional cell

Do~k

complex, we adopt the combinatorial Laplacian matrices [16],
defined as:

L, = B,BT,
L, =B/Bj,+B, 1B, fork=1,....K-1 (2
Lx = BLBy

with Ly 4 = BgB;C and Ly, = Bk+1Bf+1 representing,
respectively, the lower and upper Laplacians.

An edge signal x over a cell complex C is defined as a
function that assigns real numbers to each edge, i.e., x: &€ —
R, with |£| = E. The Cell Fourier Transform of an edge signal
x € R¥ has been defined as the projection of x onto the space
spanned by the eigenvectors of L, i.e. X := fo [9]. An edge
signal x is said to be bandlimited, with bandwidth K, if it
admits a sparse representation, i.e. it can be represented using
only K eigenvectors of Ly, i.e. as x = Uy xX, where Uy x is
a matrix whose K columns are the eigenvectors with indexes
in the frequency set /C, with |IC| = K. If the observations of a
bandlimited signal of order K are available only over a subset
S of edges, the edge signal can be recovered from a subset
of observed samples xg using the interpolation formula [10],
[15]: .

X9, 3)
where xg is a signal equal to x on the subset S and zero
outside, Dgs is the diagonal selection matrix with diagonal
entries equal to 1 for the edges in the sample set S and
Ds = I—Dgs. We provided that the number of samples is at
least equal to the bandwidth K [15]. This formulation ensures
an optimal reconstruction of the missing edge values by
leveraging the spectral properties of the first-order Laplacian.

x = (I-DsUy U] x)

III. DYNAMIC WATER MONITORING FOR LEAK DETECTION

With the objective of identifying and characterizing water
leakage in a water distribution network, it is essential to
introduce a dynamic model of signals in a WDN.

Let us denote with x[k] the vector whose entries represent
the flow on the edges of the cell complex at time k. The
cell complex is built by filling all the polygonal cells in the
water distribution network. Then, we model the dynamic time
evolution of the flows as:

x[k + 1] = Mx[k] 4 u[k] 4)

where the matrix M governs the system dynamics on the
topology structure. In our model, we assume M equal to the
mask of the first-order Laplacian L;, as it describes lower
and upper adjacencies among edges. Therefore, the dynamic
evolution of the water flows over time inherently incorporates
the topological structure of the network.

To avoid stability issues, the matrix M is normalized by
its maximum eigenvalue. The normalized matrix is then used
in the model to simulate the flow of water through the
network, incorporating the effects of leaks and the variation
of water demands. By integrating these elements, we model
the evolving interactions within the water distribution network,
enabling the simulation of the flow dynamics under different
conditions.
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(a) (b)

Fig. 1. (a) Water demands associated with edges: sparse in time and randomly
distributed; (b) water leakages associated with edges: sparse, as they occur
on a small percentage of edges, but persistent over time.

The water flow x[k 4 1] at time instant k 4 1 incorporates
the effects of water demands d[k] and leakages £[k] through
the additive term u[k] = d[k] + £[k]. Differently from other
approaches where the demands are associated with node-
based water consumption, here we express them as edge
flows, ensuring a consistent edge-based representation for the
entire system. These two terms have different characteristics.
Demands are sporadic in time, since they last for a short
duration on the time scale and appear on random edges.
This corresponds, for example, to opening a faucet for a few
minutes or using an appliance at another point in the network.
Then, demands are characterized by their limited duration and
random occurrence in the network. On the other hand, leaks
may start at random moments but, once they occur, they are
persistent (until an intervention is made to stop the leakage)
and, statistically, they occur on a few edges of the complex.
They are therefore sparse across the edges but persistent over
time. This is precisely the property that we want to exploit
to detect the leaks. This is illustrated in Fig. 1, where the
behavior of the two terms of the model d[k + 1] and £[k + 1]
is shown in plots (a) and (b), respectively.

A. Identifying anomalies on WDNs

Leak detection in WDNSs is crucial for minimizing water
loss, reducing operational costs, and ensuring a reliable water
supply [17]. Early detection helps prevent infrastructure dam-
age, preserves resources, and supports environmental sustain-
ability by minimizing waste. In order to identify water leakage,
we formulate an optimization problem using the dynamic
model in (4), able to simultaneously identify water demands
and leakages through the term u[k]. Therefore, we solve the
following optimization problem:

min

{ulkl}, > Il + 1] = Mx[k] — ufk] |3 +X [ ulk] |

k=1
ufk] < 0, Vk,
)

Fig. 2. Cell complex representation of L-town.

where L represents the length of the time window. This convex
problem aims to simultaneously identifying water demands
and leakages in the network. The first term in (5) quantifies the
deviation between the observed flow signal at time k and the
expected flow signal based on the previous time step k—1. This
term models the difference between the actual measurements
and the predicted values considering the diffusion term M. Our
goal is to minimize this error, ensuring that the reconstructed
flow x[k] closely follows the network’s model behavior. Note
that the obtained discrepancy corresponds to the anomalies in
the diffusion process, that are the leakages and water demands.
The second [;-norm term in the objective function forces
sparsity on the entries of the vector u[k]. The non-negative
penalty coefficient A controls the balance between the data-
fitting term and the sparsity term.

We now present the results obtained using the proposed dy-
namic water monitoring model for leak detection on synthetic
data from the L-town [18]. We start assuming the ideal (non
realistic) case where the flows are observable over each link.
Later on, we will remove this hypothesis and we will consider
the more realistic scenario with sparse sensor measurements.

We report the cell complex C of the associated network
in Fig. 2 [19]. Here, we introduced four leaks at specific
edge locations in the network, with indices 200, 245, 500,
and 650. These leaks were initiated at different time instants:
50, 20, 30, and 70, respectively, each with a constant intensity.
Additionally, water demands were randomly applied to 5% of
the network edges. Each demand lasted for a fixed duration and
intensity. The edges affected by these demands were randomly
selected from the network. The results are visualized in Fig.
3, which shows the signal u[k] reconstructed using (5). From
a visual inspection of this figure, it is possible to see that
persistent values are derived in correspondence of the edges
with leakages, which are represented in dark red stars. In order
to identify leakages, we define the edge signal s, = >, [u[k]|
and represent its entries with blue lines in Fig. 4. We indicate
the edges with leakage using red stars, while the horizontal
black line denotes the threshold used to identify the leakages.
Specifically, the values of s,, exceeding the threshold identify
edges affected by leaks.
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Fig. 3. Reconstructed |u[k]|. Colors are associated with u[k] value at each
edge and each time point k. In red stars we have leak positions.
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Fig. 4. Results of s, in blue line. We represent the edges with leakage using
red stars, while the horizontal black line represents an arbitrary threshold that
can be used to identify the leakages.

B. Identifying anomalies on WDNs from a subset of measure-
ments

In this section, we analyze the more realistic scenario where
only sparse sensor measurements from a subset of graph
edges are available. Our goal is to detect leakages under these
conditions. Specifically, we aim to reconstruct the signal from
a limited set of observations while simultaneously identifying
potential leakages in the system.

Given the cell complex C associated with the WDN, we
assume that the flow vector x[k] can be represented as a
bandlimited signal of order K, meaning that x[k] can be
expressed as the linear combination of K eigenvectors. The
optimal sensor locations, for a given set of measurements, are
selected using the max-det method proposed in [11], assuming
|S| > K. The edge values on unmeasured locations are then
reconstructed using (3) by obtaining the estimated edge flows

Algorithm 1 Leak Detection with sparse sensor measurements
1: Input: Cell complex structure C, sampled edge measure-
ments xg[k], number of time steps L, threshold 7

: Output: Indices of detected leakages £

: Step 1: Edge Value Sampling and Reconstruction

: Define optimal sensor locations S ensuring |S| > K

for k=1to L do
Reconstruct edge flows X[k] using interpolation:

Qv oA W

%[k = (I - DsU,xcUT ) 'xslk].

7: end for
8: Step 2: Anomaly Detection
9: Solve the optimization problem to obtain u[k]:

Dl x[k + 1) = Mx[k] — ulk] |5 +

min
{ulk]}f_, =1
A [ alk] 1
ulk] <0, Vk

10: Step 3: Leakage Localization

11: Compute cumulative leakage score: s, = >, [u[k]|
12: Set a detection threshold 7

13: Identify leakage indices:

L={ic(,....E) |suli) >}

14: Return: Indices of detected leakages £

These flows are replaced for each time instant into the
developed optimization problem (5) that accounts for the
network’s diffusion-like behavior and anomalies. Given the
solution u[k] of (5), persistent deviations over time indicate the
presence of a leak, while sporadic deviations may correspond
to normal water demands.

To objectively evaluate the presence of leakages in the
system, we firstly analyze the total leakage contribution at
each edge over time by defining s, = ), |u[k]|. Then, with
the goal to determine whether an edge should be classified
as a leakage point, we define a detection threshold. Different
strategies can be used to select the threshold. For instance, a
statistical approach can be employed, modeling the network
under leakage-free conditions with random scenarios that
include only demands. In this way, the false alarm probability
can be fixed to control the trade-off between true positive and
negative in leakage detection. Any edge with a leakage value
exceeding this threshold can be considered a detected leakage.
To quantify the effectiveness of the detection, we compute the
F1-score for each run, which balances precision and recall, and
then we average it across the V,,, independent repetitions
of the simulation. The details of the proposed algorithm are
summarized in Algorithm 1.

To evaluate the proposed methodology, we implement a
simulation focusing on leak detection with a limited sub-
set of flow measurements. The simulation considers a time
horizon of 100 time steps. Leaks are introduced on a 1%
of the nodes, in random positions and with random starting
times. The leak intensity is fixed throughout the simulation.

2410



Additionally, demands were introduced at 5% of the nodes,
with their locations chosen randomly. These demands have
a fixed duration and intensity. To ensure statistical robustness
and obtain results independent of the specific leakage positions
relative to the sampled points, we perform N, repetitions
of the simulation, averaging the outcomes across these runs.
For the simulation here, we set L = 10. These analyses
are repeated for different values of the number of available
samples, ranging from 100 to the total number of 900. The goal
is to analyze how the performance of the leak detection method
varies as a function of the number of available samples,
assessing its sensitivity to the amount of data collected. It is
important to notice that as the number of samples increases
the method is able to account for a larger bandwidth, under
the recovery condition |S| > |K|. This implies that the signal
can be more accurately recovered since we have more samples,
and then we can use more eigenvectors to represent the signal.

09 F ® 1

F1 Score

2L 4
U._“

) I A SO
LELE LS & S P

Number of samples

Fig. 5. Average Fl-score as a function of the number of available samples.

To test the leakage detection performance, in Fig. 5, we
report the average Fl-score across N,., independent sim-
ulations, as a function of the number of available samples
by fixing the signal bandwidth. The plot clearly shows an
increasing trend: as the number of samples grows, the per-
formance of the leak detection method improves as well.
This indicates that having more measurements leads to a
more accurate identification of leakages. Eventually, when the
total number of samples is available, the detection reaches its
optimal performance, achieving perfect identification of the
leakage points.

IV. CONCLUSIONS

In this paper, we introduced a novel dynamic topology-
based learning approach for leak detection in Water Distribu-
tion Networks. By leveraging Topological Signal Processing,
we modeled water flow dynamics using high-order representa-
tions that extend the traditional graph-based frameworks. This
approach allowed us to efficiently reconstruct flow signals
from a limited number of sensor measurements of edge flows
and accurately identifying leakages within the network. Our

method combines a dynamic modeling framework with an
optimization-based anomaly detection strategy, distinguishing
between normal water demands and persistent leakages. The
experimental results demonstrated that our approach success-
fully detects leaks even in scenarios with sparse sensor data.
Moreover, the Fl-score analysis highlighted that the perfor-
mance of the leak detection method improves as the number of
available measurements increases, reaching optimal detection
when the full dataset is available. These findings confirm the
potential of our dynamic topology-based learning for real-time
WDN monitoring, offering an efficient solution for anomaly
detection.
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