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Abstract—In this paper, we propose a framework for fine-
tuning vision transformer models to learn attention in distributed
settings, where the computational nodes communicate through
a peer-to-peer network. The nodes are not allowed to share
their private training dataset, but they can share some model
parameters with the neighboring nodes. We discuss how the
proposed framework helps each node acquire global understand-
ing and attention using only its local dataset. We address the
problem of parameter-efficient fine-tuning of large transformer
models for downstream learning tasks and demonstrate that our
proposed framework enables each computational node to achieve
performance comparable to that of a single central device with
access to the entire training dataset. We present the fine-tuning
results for ViT, DeiT, and Swin-transformer models on a variety
of datasets, and we also show their attention maps to provide
insights into the distributed learning process of transformers.

Index Terms—distributed fine-tuning, vision transformers,
gradient-tracking, attention maps, peer-to-peer networks.

I. INTRODUCTION

Machine learning techniques have recently gained consider-
able attention for their effectiveness in solving emerging prob-
lems in computer vision and natural language processing [1]-
[4]. Their rapid advancement is driven by (a) deeper insight
into learning methods, (b) powerful computational resources,
and (c) easier access to large datasets. In particular, vision
transformers have excelled in image understanding tasks [5]-
[8], yet training these models is extremely resource-intensive
because it involves billions of parameters and requires huge
datasets. As a result, training from scratch is often infeasible,
making the use of pre-trained models followed by fine-tuning
on specific tasks more advantageous, as demonstrated by their
success across various applications [9].

Another important consideration in many practical applica-
tions is data acquisition, where heterogeneous data is acquired
by geographically distributed sensors, making it impractical
to consolidate on a single server (computational node). If
these distributed nodes are trained on local datasets, they often
struggle to generalize well. For example, one node may have
images of cats and dogs, while another has images of cars
and ships, making it difficult for either to classify all four
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classes. Moreover, these local datasets cannot be used during
pre-training because (i) they often contain private information,
and (ii) new data is continually collected, making it unavailable
at that stage. Since training an entire model from scratch
is practically infeasible across distributed nodes, leveraging
existing pre-trained models and fine-tuning them for new
downstream tasks becomes crucial.

In this paper, we propose a distributed training framework
for parameter-efficient fine-tuning of vision transformers in
scenarios where heterogeneous data is distributed across a
peer-to-peer network of nodes. The nodes are allowed to com-
municate with their neighbors, but due to privacy constraints,
they are restricted from sharing private data samples. The main
contributions of this paper are as follows: (i) we propose a
privacy-aware distributed fine-tuning method, P2P-FT, which
leverages weight-mixing and gradient-tracking strategies. Each
node shares a subset of its model parameters (which require
fine-tuning), along with the local gradient vectors (evaluated
with respect to the fine-tuning parameters), with its neighbor-
ing nodes. The proposed fusion strategy enables the estima-
tion of the global gradient and the computation of updated
model parameters; (ii) the proposed framework is applicable
to any vision transformer, as it encourages the model to
learn attention globally and directs the model parameters
toward the global solution. In this paper, we provide numerical
experiments on ViT, DeiT, and Swin transformer models
to highlight the performance of P2P-FT and compare the
results with local fine-tuning; (iii) we analyze the attention
maps generated by P2P-FT and compare them with the
results generated by locally fine-tuned and centralized mod-
els, highlighting the ability to demonstrate improved feature
representation learning for previously unseen images; and (iv)
we show that P2P-FT effectively handles heterogeneous data
distributions, eliminating bias introduced by non-uniform data
distributions across computational nodes.

II. PRELIMINARIES AND RELATED WORK

In this section, we first establish the preliminaries of the
fine-tuning problem for vision transformer models. Subse-
quently, we introduce the distributed peer-to-peer learning
framework. Finally, we review related work and highlight the
limitations inherent in the existing literature.
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A. Fine-tuning Transformers

Now, we formally describe the training process. We de-
note the model parameters @ € RP and the pre-training
dataset Dy,,... We can mathematically represent the pre-training
problem as: ming {Ex~p,,. L(x;0)}, where L(x;0) is the
function that evaluates the loss based on the training data x
sampled from the pre-training dataset D,,.. The objective
is to minimize the loss by learning the optimal model pa-
rameters 6, after which we proceed to fine-tune the vision
transformers for downstream tasks. This involves taking the
pre-trained model and modifying it by replacing the MLP
head to match the number of outputs required for our task.
Subsequently, the model undergoes training using the task-
specific dataset. In this process, a subset of pre-trained pa-
rameters 6’ C 0 are typically kept constant, while training the
remaining parameters 6 to minimize the modified loss L:

min {EXNDWNL(X; 0, 9/)} ,
0

where the training dataset Diy,,. is specific to the new
task. As an example, we can consider the use of a pre-
trained “timm/vit_small_patch16_224" model (from timm
library) for classifying the CIFAR-10 dataset. This model
has been pre-trained on the ImageNet dataset. To fine-tune
timm/vit_small_patch16_224 for CIFAR-10, we replace the
MLP head with one of size 10, corresponding to the number of
classes in the dataset. Subsequently, the transformer is trained
on this downstream task using the CIFAR-10 dataset. This
approach significantly accelerates the training process, as the
pre-trained model already encodes valuable feature representa-
tions learned from ImageNet, which are leveraged to improve
the model’s understanding of the CIFAR-10 examples.

B. Distributed Learning Framework

The distributed learning methods consider the problem to
be divided over a network of n nodes. Each node possesses
its local loss function L; and some private data D;. The global
problem is to minimize the average of all local cost functions,
ie., for D={Dy,---,Dp},

. 1 ¢
meln{L(B D) := H;Li(am}.

An intuitive solution considers the federated learning frame-
work, where the gradients are evaluated at the client nodes
and then sent to the server node. The server aggregates these
gradients and uses them to update its model parameters. These
updated parameters are then transmitted back to the client
nodes, allowing them to update their local models using these
parameters. The limitation of this approach is the dependence
on the reliability of the server and the constraints imposed
by network connectivity. In this setup, all clients are required
to maintain a bi-directional connection with the server, which
can result in significant communication bandwidth demands.
Additionally, the server represents a single point of failure
within this architecture. In case of a server outage or an
attack, all clients are adversely impacted. Hence, there is a

demand for methods designed to operate within a fully dis-
tributed peer-to-peer network topology. Under the assumption
of bi-directional communication, some decentralized federated
learning methods are proposed [10], [11]. These methods at-
tempt to comprehend the global dataset using a weight-mixing
methodology and a variant of gradient descent. However, this
approach is not desirable in large-scale networks due to the
high cost associated with bi-directional communication links.

A well-known approach in the literature on dis-
tributed optimization considers a first-order gradient descent
method DGD [12] to minimize the loss when dealing with the
data distributed over a peer-to-peer network of nodes. The
nodes are prohibited from sharing private data D; but can
exchange their local model parameters 8 € RP with neigh-
boring nodes. We define W = {w; ;} € R"*" as the weight
matrix representing network connectivity, where W is assumed
to be doubly stochastic for a strongly connected, weight-
balanced graph. For each node ¢, we consider 0? € RP as the
local parameter estimate vector computed at k-th iteration. For
simplicity of notation, we define L;(8%) := L;(8F,D;). Then,
at each iteration DGD computes the following:

OF ! i:w” (97 - aVLi(OfD ; Vk>0, (D

j=1

where o is the learning rate. We note that 0¥ — oV L;(8%)
represents a local gradient descent update, while the ag-
gregation helps attaining consensus over all nodes. In sum-
mary, each node tries to learn its local solution while being
influenced by the parameters possessed by its neighboring
nodes. This approach performs well when the data distribu-
tions are homogeneous across all nodes. However, in most
practical applications, data heterogeneity leads to a notable
difference between the global and the local solution. This
discrepancy results in a finite gap between local and global
losses, i.e., Vi, |VL;(0) — VL(8)| # 0, which leads to inex-
act convergence. To address this problem, a gradient-tracking
methodology, GT-DGD, was introduced in [13]. This involves
computing an additional term, 7%, to estimate the gradient of
the global loss function, which can be evaluated as:

T 3wy (TF 4 VIO - VLi(6))) k>0,
j=1

where 6 € R? and 79 = VL;(6). GT-DGD replaces the
local gradient VL; (04 ), as evaluated in (1), with 7%. It can
be verified that at each node, 7, — VL. Consequently, this
strategy eliminates the gap between local and global losses
caused by the heterogeneous data distribution. Furthermore,
distributed processing enables the network to share the com-
putational demand, leading to faster convergence.

Another limitation of both DGD and GT-DGD is their de-
terministic nature, which requires the evaluation of full-batch
gradients at every iteration. In machine learning applications,
dealing with huge datasets makes this computation infeasible.
Particularly in streaming scenarios, where data is acquired in
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Fig. 1. Proposed framework for distributed fine-tuning of vision transformer models.

real-time, models cannot access the entire dataset to compute
the gradient. These situations demand the use of stochastic
mini-batch distributed gradient descent methods. Furthermore,
it is noteworthy that DGD and GT-DGD are primarily designed
for weight-balanced directed networks and cannot be directly
applied to generic directed networks [14]-[16]. In the fol-
lowing section, we present our proposed framework, which
utilizes distributed gradient descent with gradient-tracking for
fine-tuning vision transformer models.

III. PROPOSED FRAMEWORK

In this section, we describe a distributed learning frame-
work for fine-tuning transformer model parameters, designed
to learn attention over distributed heterogeneous datasets
while preserving data privacy. Our proposed method uses
efficient weight-mixing and gradient-tracking strategies, en-
abling us to achieve performance comparable to the central-
ized fine-tuning setup. We define 6 € RP as the set of all
pre-trained model parameters out of which 0 € RP79 are
kept constant and 6 € R? are to be fine-tuned. Each node
possesses a local dataset D; € D :={Dy, -+, Dy} and a
local loss function L; (0 0',D;). We note that 6’ remains
fixed throughout the training process. To simplify the no-
tation, we define L; LG =L;(0,6',D;) and the global loss

( ):=13" | L;i(f). The goal is to minimize the global
loss, Wthh can be expressed as follows:

P: mjn{L 0) = 12@-(5)}.
o i

To this aim, we propose a distributed stochastic gradient
descent method that leverages weight-mixing and gradient-
tracking strategies to update only the fine-tuning param-
eters using the estimate of the global gradient. We con-
sider n nodes communicating over a strongly connected
network, with W € R™*"™ representing the connectivity ma-
trix. In general, this matrix may not be weight-balanced.
To address the asymmetry, we define two mixing matrices

={a;;} and B={b;;}, where q;; = wm/z Wi
and bij =wi /> w;; for all i,j={1,2,- n} This

normalization ensures that A is row stochastic, while B is
i%lumn stochastic. Furthermore, for each node i, we define
0, € RY as the estimate of the fine-tuning parameters eval-
vated at k-th iteration. Figure 1 illustrates the evolution of
local models using P2P-FT method. Depending on the type of
device, each node may differ in computational capabilities and
have different local data classes and sizes. In each iteration,
every node shares its local fine-tuning parameters with its
neighbors and obtains their local gradient-tracking terms.
Subsequently, each node aggregates these gradient estimates
and computes a weighted sum to update the local models.

Algorithm 1 formally describes the P2P-FT method. The

~k
estimate of the fine-tuning parameters 6, is initialized (par-
tially) randomly. The updates can be divided into two main
steps: (i) computing the gradient-tracking term 7% to estimate

the global gradient direction (line 7); and (ii) updating the local
model parameters (/9\1€ by performing a gradient descent step
and aggregating model parameters from neighboring nodes
(line 4). We note that the model parameters for the MLP
head are always initialized randomly. In contrast, the other
parameters belonging to the layers to be fine-tuned can be

Algorithm 1 P2P-FT at each node i

Require: 5? eR%a>0,D;,{ai;},{bi;}
1: Select the parameters of the last few layers to be fine-
tuned 6; and freeze the rest of the parameters ..
2: Samp]e a mm1 -batch from D; and evaluate the gradient

VL()

~
D

ke
n k
i D i (0]- - on'j>
k1

5: Sample a mini-batch from D; and evaluate VL;(0; )
6 gt VI (ek“)

7. fﬂ « Zj: ( +gk+1 gf)

8: end for o
9: return 6, > The fine-tuned parameters are 6,
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Model Datasets Local T P2pFT
Node 1 | Node 2 | Node 3 | Node 4 | Node 1 | Node 2 | Node 3 | Node 4
Pets 13.80 43.10 23.88 13.13 87.21 87.28 87.21 87.21
ViT Flowers 13.36 15.65 44.84 25.98 99.80 99.80 99.80 99.80
CIFAR-10 20.07 19.88 29.78 29.94 97.44 97.45 97.44 97.44
CIFAR-100 9.86 9.81 49.28 24.07 87.40 87.40 87.44 87.40
Pets 13.26 42.96 24.22 13.06 86.40 86.40 86.40 86.40
DeiT Flowers 13.36 15.58 44.63 25.78 92.81 92.98 92.87 92.84
CIFAR-10 19.88 19.63 29.45 29.70 95.15 95.12 95.10 95.11
CIFAR-100 9.70 9.34 45.96 23.20 79.05 79.04 79.14 79.03
Pets 13.13 43.37 24.15 12.79 86.81 86.74 86.60 86.67
Swin Flowers 13.36 15.65 44.90 25.98 99.83 99.83 99.83 99.83
CIFAR-10 19.98 19.72 29.72 29.88 97.59 97.65 97.55 97.59
CIFAR-100 9.86 9.86 48.79 24.05 87.04 86.99 87.03 87.02

TABLE I

ACCURACY COMPARISON OF VIT, DEIT, AND SWIN-TRANSFORMER MODELS AFTER FINE-TUNING FOR 100 EPOCHS.

initialized with the same values as those obtained from the
pre-trained model. This typically leads to faster convergence as
the model leverages the knowledge acquired by the pre-trained
parameters. Since transformer models consist of billions of
parameters, we train only a subset, ensuring efficient training
while achieving excellent performance by effectively leverag-
ing pre-trained knowledge (as discussed in the next section).

IV. EXPERIMENTAL EVALUATION

In this section, we consider the distributed fine-tuning of
three vision transformer architectures: ViT, DeiT, and Swin
transformer [S]—[7]. Each of these models consists of multiple
attention blocks. Our approach involves freezing the model
parameters for the majority of these blocks while training only
a limited number of selected layers. We evaluate classification
accuracy for P2P-FT and compare it with locally trained
models (Local-FT) across multiple datasets. We perform all
experiments using a HPC cluster with a fixed learning rate
of 10~ for fair comparison.

A. Network

We now describe the distributed training setup. We consider
a peer-to-peer network of n = 4 nodes communicating over a
strongly connected directed graph (for example, see Figure 1).
Each node possesses a pre-trained model and a local training
dataset. These nodes exchange fine-tuning model parameters
and gradients computed during backpropagation but are pro-
hibited from sharing their private datasets.

B. Datasets

We fine-tune vision transformer models and evaluate their
classification accuracy using four datasets: (i) Oxford-Pets, (ii)
Oxford-Flowers, (iii) CIFAR-10, and (iv) CIFAR-100. Each
dataset consists of colored images categorized into multiple
classes. The Oxford-Pets dataset includes 37 categories of
dogs and cats, with approximately 200 images per class. The
Oxford-Flowers dataset comprises 102 flower categories, with
class sizes ranging from 40 to 258 images. The CIFAR-10
dataset consists of 60,000 images across 10 categories, while
CIFAR-100 contains 100 classes, each with 600 images. All

Datasets \ Node 1 Node2 Node3 Node 4
Pets 0-4 5-19 20-29 30-36
Flowers 0-19 20-39 40-79 80-101
CIFAR-10 0-1 2-3 4-6 7-10
CIFAR-100 0-9 10-19 20-74 75-99
TABLE II

DISTRIBUTION OF CLASSES ACROSS DIFFERENT NODES.

datasets are divided into training and testing sets, with fine-
tuning performed on the training set and accuracy evaluated
on the test set.

Due to space limitations, we focus on the most challenging
scenario where, in the distributed fine-tuning setup across
a peer-to-peer network, nodes are assigned non-overlapping
classes, i.e., Node 1 is never fine-tuned on the classes pos-
sessed by any other node. The class distributions across
nodes are explicitly described in Table II. We note that this
data heterogeneity cannot be tackled without using gradient-
tracking as suggested by the theoretical results found in [17].
Therefore, in our experimental evaluations, we refrain from
comparing the results of P2P-FT with such methods.

C. Transformer Architectures and Performance Results

We now describe the architectures
and Swin transformer models used in our distributed
fine-tuning setup. The ViT model, implemented using
timm/vit_small_patch16_224, utilizes a convolutional layer
to generate patch embeddings, which are then passed
through a sequence of 12 blocks comprising normaliza-
tion, attention, and MLP layers. The DeiT model, based
on timm/deit_small_patch16_224, follows a similar ar-
chitecture but incorporates data-efficient training mecha-
nisms. In contrast, the Swin transformer, implemented using
timm/swin_small_patch4_window7_224.ms_in22k, consists
of four stages, each containing several blocks, and performs
self-attention within local windows. For all models, we modify
the classification head to match the number of classes in the
global dataset and freeze all blocks except the last one (or
the last block of the fourth stage in Swin transformer). The
unfrozen weights are then updated using the method outlined
in Algorithm 1. Each node possesses a non-overlapping private
fine-tuning dataset consisting of images from distinct classes,
while the testing dataset includes samples from all classes.

of ViT, DeiT,
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Fig. 2. Visualizing attention maps for test samples belonging to unseen classes.

Table I highlights the accuracy results after fine-tuning all
models for 100 epochs. It can be observed that fine-tuning
Local-FT on local data results in poor accuracy, as the
nodes focus on learning features of their private datasets.
However, P2P-FT uses weight-mixing and gradient-sharing
strategies to achieve significantly higher accuracy, similar to
centralized training setups.

Figure 2 presents attention maps overlaid on test im-
ages from unseen classes, highlighting the differences
between Local-FT and P2P-FT. It can be observed
that Local-FT struggles to focus accurately on target objects,
often misplacing attention or distributing it across multiple
regions. In contrast, P2P-FT generates attention maps that
closely resemble those obtained from centralized fine-tuning,
even though the corresponding classes are absent from the
local fine-tuning dataset. This is because P2P-FT enables
each node to learn feature representations for unseen images
through weight-mixing and gradient-tracking strategies.

V. CONCLUSION

Training large transformer models is not feasible in many
applications. Fine-tuning the pre-trained models usually guar-
antees the best performance. In numerous practical scenarios,
heterogeneous data is distributed across a network of nodes,
and accumulating all data at a central location is not possible.
When the nodes fine-tune their models using only their local
datasets, they struggle to generalize effectively due to the bias
caused by heterogeneous data distribution. The small size of
local datasets and the incomplete representation of all classes
impact the performance of vision transformers. We propose a
privacy-aware framework for the distributed fine-tuning of vi-
sion transformer models. The proposed method P2P-FT uses
weight-mixing and gradient-sharing strategies to eliminate bias
and learn global attention weights, leading to remarkable per-
formance even for locally unseen classes. We illustrate the per-
formance of P2P-FT for fine-tuning distributed ViT, DeiT,
and Swin transformer models.
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