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Abstract—Topological signal processing (TSP) over simplicial
complexes typically assumes observations associated with the
simplicial complexes are real scalars. In this paper, we develop a
TSP framework for the case where observations on a simplicial
complex belong to function spaces that are commonly used to
represent time-varying signals. Our approach generalizes the
Hodge decomposition and allows for signal processing tasks to
be performed on these more complex observations, which can
better model signals in practice. We propose a unified and flexible
framework for TSP over simplicial complexes that expands its
applicability to a wider range of signal processing applications.
Numerical results demonstrate the effectiveness of this approach
and provide a foundation for future research in this area.

Index Terms—Topological signal processing, generalized signals,
simplicial complex

I. INTRODUCTION

In recent years, there has been growing interest in analyzing
signals supported on different domains. For signals supported
on vertices of graphs, graph signal processing (GSP) has
emerged as a powerful tool [1]-[3]. For signals supported on
edges of simplicial complexes such as in telecommunication
traffic flows, topological signal processing (TSP) is developed
[4]-[8]. The basic idea behind TSP is based on the Hodge
decomposition of signals, which decomposes a signal into
three orthogonal components: the irrotational, solenoidal, and
harmonic components. Like GSP, there are also ideas based
on the eigenspaces of the Laplacian operator and enables the
consideration of concepts such as frequency, Fourier transform,
wavelets, and convolution [9], [10].

These works have largely focused on the case when the
signal (on each simplex) is a scalar in R (or C). To deal with
discrete time-varying signals, [11] has proposed an approach
that embeds the signals in a product space, similar to the time-
vertex framework in GSP [12]-[14]. By leveraging smoothness
over both spatial and temporal domains, this method is able
to effectively reconstruct time-varying flows. Using a similar
strategy, [15] proposes an online imputation method for edge
flows.

In practice, the signal space can be more complex. An
example is given by L?(£2), where Q is a continuous time
interval, which allows the modeling of continuous-time signals
not captured by the frameworks of [11], [15]. For a simplicial
complex modeling a network like a sensor network (cf. [16,
Section V.]), observations or samples collected at each simplex
may not be time synchronous. More specifically, signals
observed at simplexes, e.g., nodes, edges, or faces, may not
be sampled on the same time stamps, and signals may not be
observed at uniform time intervals.
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If our signal model uses only real-valued signals, then we
need to consider multiple discrete timestamps and process
observed signals on the entire network either separately for each
timestamp [4] or jointly [11]. As observations are asynchronous,
at each discrete timestamp, the available information over the
whole network can be incomplete. Moreover, asynchronism
may render uniform discretization difficult. On the other
hand, modeling signals as functions from a space L?*()
alleviates such problems by aggregating several asynchronous
observations into a single signal model that captures spatial and
temporal correlations for different simplexes (cf. Section IV).
A similar approach is taken in generalized GSP (GGSP) [3],
[16], [17]. To describe such signals, we need an algebraic entity
different from R.

The well-established setup of algebraic topology [18] pro-
vides the most general framework to describe non-scalar signals.
More specifically, we may use elements in abelian groups,
modules, or even local coefficient systems (sheaves) [18] to
model such signals on simplicial complexes. Formally, they
form chains or cochains in algebraic topology. In our paper,
though in the same spirit, we shall be more concrete by focusing
on normed function spaces as signal spaces, which are abelian
groups. They are sufficient for us to model asynchronous time
series of signals, both discrete and continuous, on simplicial
complexes.

In this short paper, we formally describe the proposed frame-
work with generalized signals on simplicial complex, to model
time-simplex signals. In general, the Hodge decomposition does
not always exist for such a signal (e.g., [19, Example 2]). The
precise reason is beyond the scope of the paper. We highlight
that essentially, a generalized signal does not necessarily belong
to a field such as R, in which each non-zero element has
a multiplicative inverse (see [20]). To overcome the above
challenge, we propose an optimization model as a substitute,
which is shown to generalize the Hodge decomposition. We
demonstrate how the framework can be used effectively in
practice with real datasets. This work can be viewed as a
simultaneous generalization of large parts of both [4] and [16].
Our work [19] is an extended version of the paper, in which a
general formal framework is proposed.

II. SIMPLICIAL COMPLEXES AND TIME-SIMPLEX SIGNALS

We first define simplicial complexes [4], [18], which are
high-dimensional generalizations of graphs.
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2-simplexes:
[UU, U1, UQL ['Uh U3, Uﬂ
I-simplexes (edges):
[UU, Uﬂ, [Ul, U2]7 [1127 Uo]
[v2, v3], [v1, V3]

Vo Vg

Fig. 1. This exemplifies a 2-simplicial complex X with two 2-simplexes (the
colored triangles) and five 1-simplexes (the edges). The oriented simplexes
are listed by the side. For example, the clockwise orientation of the triangle
[vo, v1, v2] has oriented boundary edges [vo, v1], [v1, v2], [2, Vo] as shown.
A signal in A assigns an element in .A to a simplex of appropriate dimension
in X. In the example, (z1,x2) is a 2-signal assigned to the 2-simplexes. It
generates the 1-signal (1,21 — x2,21, —T2,x2) on the set of edges, via
the boundary map 92 (or By in the matrix form).

Definition 1. The standard n-simplex (or dimension n simplex)
is defined as the set

An = {(ro,...,my) €0, 1] | Zri =1}.
i=0

Each point v; € [0,1]"! with its i-th component 1 is a vertex
of A,. A topological space homeomorphic to the standard
n-simplex is called an n-simplex. In A, if we require k > 0
coordinates being 0, we get an (n — k)-simplex, called a face.

A simplicial complex X is a set of simplexes such that

o Any face from a simplex of X is also in X.

e The intersection of any two simplexes 01,002 € X is a

face of both o1 and o».

Intuitively, a simplicial complex is obtained by gluing
“triangles of different dimensions” along their boundaries.

The geometric realization of a simplicial complex X is
obtained from gluing all its simplexes along common faces.
We usually do not distinguish X from its geometric realization.
For a k-simplex o* with vertices {vo, ..., v}, an orientation
is an ordering of its vertices, denoted by [v;,,...,v; ] (see
Fig. 1). Two orientations are opposite if they differ by an odd
number of permutations. Otherwise, they are the same.

Now we consider signals. Let A be a function space on
a domain §) that is preserved under (function) addition and
subtraction, i.e., x1 + x2,21 — 2 € A provided z1, 25 € A.
For example, A can be the space of polynomials up to a fixed
degree, a subspace of L*(f2), or splines. We use each element
x of A to model a time series. In many applications, it suffices
to observe the value of x at a discrete or even a finite subset
of Q to fully determine x.

Definition 2. Suppose a finite simplicial complex X has ny,
oriented k-simplexes {c%,... ok } for k =0,... K. A k-
signal X = (;)i<n,, in A assigns x; € A to the i-th simplex
oF. The set of k-signals in A is denoted by Ci,(X, A).

Intuitively, analogous to GSP, a k-signal is a collection of
elements of A, each assigned to a k-simplex of X.

In the context of our paper, a k-signal x € Cy(X,A)
associates a “time series” to each k-simplex of X. Another
key player is the boundary operator O : Cip(X,A) —
Cr—1(X, A), that produces a k — 1-signal given a k-signal.

Definition 3. For each signal x = (z;)i<p, in Cx(X,.A), the
k — 1-signal Oy (x) assigns (—1)7x; to the oriented simplex
[Vigy s Vi; 13 Vijoqs---,0i,] for each 0 < j <k, where
[Vig, - - - » Vi, ] is the orientation of o (see Fig. 1).

Intuitively, any boundary of a k-simplex o¥ takes the same
signal value (in \A) as o itself, up to a sign determined by
the index of the missing vertex.

Equivalently, Oy has an ny_1 X nj matrix form By, whose
(j,1)-th entry is 1 (resp. —1) if the of_l is a face of o; with
the same (resp. opposite) orientation and O otherwise. The k-th
Laplacian Ly, is

L, =B]B; + B, 1B}, (1

where by convention Bg = Bxgi; = 0. If A = R is the
space of constant functions, then the Hodge decomposition
[4] claims that each k-signal x has a unique decomposition
X = X_1 + X9 + x1, where x_; € imBL,xo € ker Ly and
x1 € im By ;. The decomposition does not hold for a general
A, and we provide a generalization in the next section.

III. THE FUNDAMENTAL LEARNING MODEL

To propose the learning model, we assume that 4 has a
norm ||-|| 4. For example, the L2-norm is a common choice if
A is a subspace of L?(£2). This metrical setup can be extended
to Ci(X,A) as follows. Recall that X has ny oriented k-

simplexes {o%,...,oF }.

Definition 4. For x = (%;)i<n, € Ck(X,.A), its p-norm is

Il = > Nl

1§1§nk

As we have pointed out, given a signal x € Cj(X,.A) for a
general A, we usually do not have the Hodge decomposition
as we have briefly explained in Section I. For this purpose,
we propose the fundamental learning model as the following
optimization:

min
(x0,%X1,X—1

ol + Gallx' =Xl + GR()

s.t.x =x0+ X1 +xX_1

Xg € ker O, @

X1 = Ok+1(¥1), ¥1 € Crpa1 (X, A),
x_1=05(y-1), y-1 € Cr_1(X, A),

where the boundary operators are as defined in Definition 3.

The term ||x¢||x,, corresponds to the Hodge decomposition
(cf. Theorem 1 below) if A =R and p = 2. The term ||x" —
X||k,p is that for data fidelity. Lastly, R(-) is a regularizer that
is problem-dependent. It usually reflects our prior knowledge
of the properties of the signal such as smoothness as well as
task-specific signal models. The coefficients (i, (> are tunable
hyperparameters. Apparently, the optimization in (2) can be
applied for a general A.

Tips to apply in practice: To solve (2), it will be convenient
if we can parametrize Cj_1(X,A), Cr41(X,.A) and ker 0.
For Cj—1(X, A), an element y takes the form (y;)i<pn, _,, with
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y; € A. Therefore, if we can parameterize 4, then we can
also do so for y. As ker 9y C Cx(X, A), the same approach
can be applied to Cy11(X,.A) and ker . In Section IV, we
shall see a variant of this general idea that a parameterization
is based on the eigendecomposition of the Laplacian Ly.

We end this section by describing the relation between (2)
and the classical Hodge decomposition.

Theorem 1. For A = R and p = 2, if the parameter (1 >
1,¢(o = 0 in (2), then the Hodge decomposition of x' = x is
the unique solution to the fundamental learning model (2).

Proof: For x € Cy(X,R), assume that its Hodge
decomposition is x = Xo + X1 + X_1,%Xg € ker L, C ker 0,
where X; € im0j41, and X_; € im 05

Observe that to obtain an optimal solution X’ = x¢+x1+X_1
to (2), we can always require Xo L x; as the projection of
X0 +x1 to (im Jg41)T in ker Oy, to ensure ||xg || is minimal.

We first consider the case x’ = x and (2) requires
us to minimize ||Xo|l2. The space Cj(X,R) has orthogo-
nal decomposition im J;; @ ker Jy. Therefore, to minimize
Ixol|%,2, we first need to project x to kerJ;. Moreover,
ker O, = im O41 @ ker L. Since xg + X1 = Xg + X1 and x3
is constrained to be in im Jx4q, to minimize ||Xo||x,2, the
summand we need to remove from x is its projection to
im Ogy1. Therefore, the Hodge decomposition is the unique
solution to (2) provided x’ = x.

To conclude, it suffices to show that if x’ # x, then

Rollk.2 < lIxollk,2 + Cullx" = x]lx2.

By the orthogonality of the different components of the Hodge
decomposition, we have

1% = x| = 1 — %17 2
+ [lx—1 = %1l 2 + IIxo — %oll7 o-

Therefore,
inequality, we obtain

|x" — x[|k2 > [|%x0 — Xo||x,2. By the triangle

[%ollr,2 < [I%ollr.2 + [Ix0 — Xollr,2 < [[%0llk,2 + [IX = x||r2
< Ixollk,2 + Cullx" = x||x,2,

where the last inequality follows from ||x’ — x|[x,2 > 0 and
(1 > 1. The result now follows. [ |

IV. EXPERIMENTAL RESULTS

1) Heat flow: study of bandlimited signals: In this study, we
consider the heat flow dataset of the Intel Berkeley Research lab.
Temperature data are collected from 53 sensors, denoted by V',
placed in the lab. They form a planar graph G with an edge set
E of size 87. Each edge is given an orientation such that heat
flows from high temperature to low temperature. Each (directed)
edge is associated with its heat flow estimated from sensor
readings at every timestamp. In this way, we obtain the ground
truth signals {x;,1 < ¢ < T = 864}, where x; = (Tet)ecE
is the (heat flow) edge signals on G at time ¢. For the task,
we assume that (a randomly chosen) r € [0.85, 0.95] fraction
of data is missing and want to estimate all signals from the
known 1 — r fraction.

We observe that a typical x
10 is bandlimited with concentrated
spectrum with respect to (w.r.t.)
51 L; (in (1)) of G (Fig. 2). Intu-
itively, this indicates that the heat
flow follows the conservation law.
Motivated by this, we propose the
following “joint” recovery scheme,
in the spirit of [16]. Specifically,
let A C L%([0,T/2 — 1]) be the
function space generated by short-time windowed functions
[21]:

0

Fig. 2. The spectral plot of a
typical x¢.

gt~ t0)?) - sin(wh),

Gty (t) = exp(—%(t — to)z) - cos(wt),

Yu,to (t) = exp(—
3)

where parameters to € Ty = {0,50,...,400} and w €
0 = {0,1/45,2/45...,1/5}. Here, o is a tunable hyperpa-
rameter. We use these functions to model temporal patterns
of the data. Therefore, a signal at an edge e is a linear
combination fe = ZtoemeeQ (ae,w,tgww,to + be,w,to¢w,to)-
Write £ = (f.)ecr for a typical set of edge signals. To
incorporate the bandlimited spatial information, let F be
the low-pass filter that projects to the space spanned by
eigenvectors (of Li;) associated with the smallest 40 eigenvalues
(cf. Fig. 2). Let u; = (uje)ecr be the i-th eigenvector.
Write ay,1y = (Gew.to)ecEs Puwity = (Dew.to)ecr and denote
Ciwto = (WisAuwte)s diwity = (Wi, by y,). Similar to GSP,
if g = F(f) = (ge)ecr, then g. can be parameterized by
coefficients {¢; w10, diw.to | to € To,w € Q,7 < 40} as:

>

to€TH,we2,i<40

Je = Us e (Ci,w,toww,to + di,w,to¢w,to)-

To solve (2), we use the fidelity term >, ;). perveal 9e(t) —
Zet||3 and regularizer Y7, o (Ciw.to| + [diw.tol)-

The performance is evaluated using the relative mean squared
error (RMSE) between the estimate & and ground truth z:
RMSE = (Z(e,t):test('%e,t - xe,t)z)/(z(e,t):test mg,t)‘ For
comparison, we consider benchmarks in [21] and [22, (2)],
called “separate” and “product” respectively. Briefly, the
separate method performs an interpolation to recover the time
series of each edge based on known signals using the window
functions (3) as basis. However, spatial signal correlations are
not used. On the other hand, the product method constructs a
new simplicial complex X = G x Pr, where Pr is the path
graph of size T". One can then apply standard TSP techniques
[4] for recovery on X with the usual signal space R.

From Fig. 3, we see that our joint method performs
significantly better than the benchmarks, particularly for large
r. Moreover, RMSEs for the joint method have much smaller
standard deviations. This suggests that the joint method has
fully used both spatial and temporal information. On the other
hand, the separate method outperforms the product method for
smaller r. However, its performance deteriorates if r increases,
as it does not use spatial information.
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TABLE I
REAL EVENTS ASSOCIATED WITH THE CURVE PATTERNS (CHANGE OF TREND OR PROMINENT FLUCTUATIONS) IN FIG. 4

(A) | Index =~ 600

The Fed reduced the interest rate by 50bps on 3 Mar. 2020 and by 100bps on 16 Mar. 2020 to combat COVID-19.

(B) 1340 - 1380

The Fed raised the interest rate by 25bps on 17 Mar. 2022 and 50bps on 5 May 2022 to combat inflation

© 1560 - 1600

The Fed raised the interest rate by 75bps and 50bps on 2 Nov. and 14 Dec. 2022, marking the end of its hawkish policies.

D) ~ 1305

Frequent fluctuations for EUR. It may correspond to the Russian invasion of Ukraine on 24 Feb. 2022.

(E) ~ 540

Sudden drop in value for CNY. This may correspond to the outbreak of COVID-19 at the end of 2019.

(F) 1500 - 1550

The short premiership of Liz Truss (6 Sep. - 25 Oct. 2022). GBP hit a 37-year low on 23 Sep. [23].

G) 105 - 450

GBP curve is unstable. It may correspond to the post-Brexit UK-EU negotiation period of the withdrawal agreement

(H) -

AED, HKD, USD curves are almost identical in shape. HKD and AED have been pegged to USD since Oct. 1983, Nov. 1997.

@ —

JPY is almost always increasing. It may be due to the Bank of Japan maintaining a negative interest rate of —0.1% since 2016.

joint
—e—joint: mean
I product
——product: mean
separate
——separate: mean

0.15

0.1

RMSE

0.05 ¢

-0.05
0.85 0.9

Missing probability r

0.95

Fig. 3. Performance comparison among the joint, separate, and product
methods. The shaded regions are derived from sample deviations.

2) Currency exchange: the Hodge decomposition: In this
study, we consider the dataset of currency exchange rates of 9
countries from 27 Jul. 2018 to 26 Jul. 2023. For each pair of
currencies, there is a single given exchange rate. For example,
between the US dollar (USD) and Euro (EUR), only the buying
value of 1 USD in EUR is provided. Therefore, if we model
the currencies by nodes of a graph G = (V, E), there is a
canonical set of edge orientations associated with the dataset.
We build a simplicial complex X with edges E and there is a
2-complex for each triple of nodes.

Suppose there is no arbitrage. Then for each triple of
currencies v, v2,v3, the exchange rates 712,723 and ri3
should satisfy 7 273 3 = 71 3. We may turn this into an additive
identity on the associated 2-complex by applying the natural
log function to the exchange rates. With such preprocessing,
we observe edge signals that are log of exchange rates.

We assume that on each day, signals on 1/3 of (uniformly)
randomly chosen edges are missing. Therefore, the observed
signals are both incomplete and asynchronous. The framework
proposed in the paper is suitable to tackle these issues.

Specifically, for each edge e = (v;,v;) € E and start date
t, we collect observed signals within 15 consecutive days
starting from ¢. There are usually less than 15 signals due to
missing data. However, we can still fit these signals with a
polynomial P, ; of degree 2. Therefore, if we let A be the

space of degree 2 polynomials (over the finite interval [1, 15]),
P, ; is a signal in A. Applying the procedure for all edges, we
obtain x; = {P.: | e € E} € C1(X, A).

Endow A with the L?-norm and we solve the optimization
(2). As there is no non-trivial edge cycle in X (each edge
cycle is the boundary of a union of triangles), it is known
from algebraic topology that we do not need to consider the
harmonic component for x; [18]. As a result, the solution
X & X; = 0fy_1,4 + O2y1s with y_1; € Co(X, A) and
vi: € Ca(X, A).

As we have discussed, the “no arbitrage” condition enforces
vi,t~ 0. The signal y_1; = {Qu,: € A| v € V} alone can
be useful for us to probe changes and trends in the currency
exchange market. Intuitively, @), ; describes the divergence of
the signal at node v [4], which can be used to detect change
and anomalous behavior at v. As each function is over [1,15],
Qv,+(1) indicates the divergence of the first date over the period
[t+0, t+14]. In Fig. 4, for each v € V, we visualize by plotting
the time series {Q, ¢(1),t € T} where T is from 27 Jul. 2018
to 26 Jul. 2023, indexed by 1 to 1819.

For each curve in Fig. 4, we see that there are noticeable
changes, patterns, and trends. We summarize some findings and
compare them to major real financial and historical events in
Table I. From the observations, we see that the approach indeed
provides us with useful information, even with incomplete and
asynchronous data.

V. CONCLUSION

In this paper, we have extended the existing framework of
TSP on simplicial complexes to handle a wider range of signal
spaces. We consider observations on simplexes as elements
of function spaces, so that we may model asynchronous time
series more accurately. We discuss the decomposition theory of
such signals with a novel optimization framework. Numerical
experiments show the effectiveness of the proposed framework.
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