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Abstract—This paper presents a Bayesian multifractal seg-
mentation method that segments multifractal textures in re-
gions with different multifractal properties. First, a compu-
tationally and statistically efficient model for wavelet leader-
based multifractal parameter estimation is developed, assigning
wavelet leader coefficients associated with distinct parameters
to different image regions. Next, a multiscale graph label prior
is introduced to capture spatial and scale correlations among
these labels. Gibbs sampling is used to generate samples from
the posterior distribution. Numerical experiments on synthetic
multifractal images demonstrate the effectiveness of the proposed
method, outperforming traditional unsupervised and modern
deep learning-based segmentation approaches.

Index Terms—Texture segmentation, wavelet leaders, multi-
fractal analysis, Bayesian estimation, Gibbs sampling.

I. INTRODUCTION

Multifractality of Images. Multifractal analysis (MFA) has
emerged as a powerful tool to characterize complex textures
in images, with applications in, e.g., remote sensing [1],
medial imaging [2], art investigation [3], and texture analysis
[4]. MFA enables the study of local regularity of images
or functions. Precisely, the texture of a N × N image F is
encoded by the multifractal spectrum D(h), which is defined
as the collection of fractal dimensions (Hausdorff dimension)
of the sets of points that take the same pointwise regularity
value h, typically measured with the Hölder exponent [5], [6].
The primary objective of MFA is to estimate D(h), which
in practice is achieved through a multiscale decomposition
and the multifractal formalism [1], [5]. A state-of-the-art
approach to MFA relies on wavelet leaders Lj,n, derived from
the two-dimensional (2D) discrete wavelet transform (DWT)
coefficients of the image, as defined in Section II.
Estimation of the multifractality parameter c2. It has
been shown that the multifractal formalism provides an ex-
pansion of D(h) in terms of the so-named log-cumulants cp,
p ≥ 1,

D(h) = 2 +
c2
2!

(h− c1
c2

)2
+
−c3
3!

(h− c2
c2

)3
+ ...,

for c2 < 0 [1], [6]. The coefficients cp are tied to the wavelet
leaders Lj,n, via the relation [6]

Cump[lnLj,n] = c0p + cp ln 2
j , (1)
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and offer a concise representation of D(h). For instance,
c1 corresponds to the mode of D(h) and is related to the
Hurst parameter [7], reflecting the average smoothness of F.
Meanwhile, c2 quantifies the width of D(h), characterizing
the extent of local regularity fluctuations in F. Thus, c2 is one
of the key quantities of interest in MFA, referred to as the
multifractality parameter. The relation (1) with p = 2 yields
Var[lnLj,n] = c02+c2 ln 2

j , indicating that c2 can be estimated
by linear regression over a range of scales j = j1, ..., j2,
ĉ2 = 1

ln 2

∑j2
j=j1

wjV̂ar[ln(Lj,n)], where V̂ar(·) is the sample
variance and wj are suitable regression weights [5], [8], [9].
This estimator is computationally efficient, but exhibits limited
accuracy. To address this issue, an efficient Fourier-based
Bayesian model and estimators was proposed for homoge-
neous images [1]. However, the approach is not suitable for
irregularly shaped domains, hence for segmentation purposes,
and can at best operate on small patches of homogeneous
textures, limiting its use for segmentation purposes.

Several methods have shown the interest in using multi-
resolution and wavelet coefficients for image segmentation
[10]–[14]. Others, such as [15], [16], have used multifractal-
based features to perform segmentation. However, while these
methods effectively integrate multiscale information, they typ-
ically rely on training data and ignore the multifractality of
textures, driven by c2.
Contributions. The key difficulty in the segmentation for
multifractal (MF) models arises from MF parameter estimation
requiring the analysis of several scales, thus being tied to
space averages, while segmentation has to be performed at
the pixel level. This work addresses this difficulty with a
novel unsupervised MF image segmentation method based
on a Bayesian framework and multiscale model. As a first
key contribution, a Fourier-based likelihood in the spirit of
[1] is defined for images with several MF textures (Sec. III).
Second, an original Potts-Markov random field with a multi-
scale graph prior is proposed, capturing both spatial and scale
dependencies in the labels. This enables defining a Bayesian
model and estimators, approximated using a Gibbs sampler, for
joint MF parameter estimation and label-based segmentation
(Sec. IV). Numerical experiments are conducted for synthetic
MF images and demonstrate the good performance of the
proposed approach over state-of-the-art segmentation methods
(Sec. V).
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II. FOURIER-BASED MODEL FOR THE ESTIMATION OF c2

Wavelet Leaders. Let D(m)
F (j,n) denote the 2D DWT coef-

ficients of the image F ∈ RN×N , n = (n1, n2), ni = 1, ..., N ,
for m = (1, 2, 3), and D

(0)
F (0,n) ≜ F [17]. The DWT coef-

ficients
{
D

(m)
F (j,n)

}3

m=1
, and the approximation coefficients

D
(0)
F (j,n), for j ≥ 1, are obtained by iteratively convolving

a scaling function ψ(m) with the coefficients D(0)
F (j − 1, ·),

followed by decimation [1]. The wavelet leaders are then
defined as the supremum of the normalized DWT coefficient
magnitudes d

(m)
F (j,n) ≜ 2−jD

(m)
F (j,n) within the spatial

neighborhood 3λj,n =
⋃
i1,i2∈{−1,0,1} λj,(n1+i1,n2+i2) over all

finer scales:
Lj,n = sup

m∈{1,2,3},
λ′⊂3λj,n

∣∣d(m)
λ′

∣∣,
where λj,n denotes a dyadic cube of side length 2j at position
2jn, i.e., λj,n = {[2jn1, 2j(n1 + 1)), [2jn2, 2

j(n2 + 1))} [1].
Statistical model. Let ℓj,n = ln(Lj,n) be the log-leaders,
the centered logarithms of the wavelet leader coefficients at
scale j and at position n, and ℓ ≜ [ℓTj1 , ..., ℓ

T
j2 ]
T the vector of

concatenated log-leaders at scales j1, ..., j2, where ℓj ∈ RN
2
j ,

Nj = N/2j , and 1 ≤ j1 ≤ ... ≤ j2 ≤ J (from fine to coarse
resolution). According to [1], [6], the distribution of ℓj can be
approximated by a multivariate Gaussian distribution,

p(ℓj |θ1, θ2) ∝
∣∣Σj(θ, r)

∣∣−1/2
exp

(
− 1

2
ℓTj Σj(θ, r)

−1ℓj

)
,

(2)
where r ≜ ∥∆n∥, |A| is the matrix determinant, θ ≜ [θ1, θ2]

T ,
−c2 = θ1, θ2 is related to the model adjustment constant c02,
and Σj(θ, r) ≈ Cov(ℓj,n, ℓj,n+∆n) is the covariance defined
by the radial symmetric function

Σj(θ, r) ≜ θ1g1(j, r) + θ2g2(j, r), (3)

where g1(j, r) = max{0,− ln
(
(r + 1)/(rj + 1)

)
} and

g2(j, r) = max{0,− ln(r + 1)/ ln 4} with rj = ⌊Nj/4⌋
[6], [18]. Assuming independence between wavelet leaders at
different scales yields

p(ℓ|θ1, θ2) =
j2∏
j=j1

p(ℓj |θ1, θ2). (4)

Fourier domain likelihood. The direct use of the like-
lihood (4) in a numerical algorithm is difficult, but it can
be efficiently approximated in the spectral domain by an
equivalent Fourier-domain data augmented model introduced
in [1]. This statistical model uses a Whittle approximation and
data augmentation to facilitate the construction of conjugate
priors for the parameters θ1, θ2 [1], [6]. Specifically, (4) is
approximated as

p(ℓ|θ1, θ2) ≈ p
(
x,µ|θ1, θ2

)
, (5)

where p
(
x,µ|θ1, θ2

)
is the augmented likelihood given by

p
(
x,µ|θ1, θ2

)
∝ θ−S1 exp

(
− θ−1

1 (x− µ)HG−1
1,s(x− µ)

)
× θ−S2 exp

(
− θ−1

2 µHG−1
2,sµ

)
. (6)

Here, µ is a latent vector and x = [xT1 , ..., xTS ]T is a subset
of Fourier coefficients of ℓ [1] defined on the regular grid
Rj = J−Nj , NjK2, with Ja, bK denoting the set of integers
ranging from a to b, as

xs ≜ x(ωs) =
1

Nj

∑
n∈Rj

ℓj,n exp (−inTωs), (7)

where s ∈
{
(j,m) : j = Jj1, j2K,m ∈ Ω†

j

}
, Ω†

j indexes low
frequencies [1], and ωs = 2πm/

√
Nj is the given Fourier

frequency with (j,m) ∈ s. The matrices Gi,s in (6), for i =
1, 2, are real and positive and given by

Gi,s ≜
∑
n∈R

gi(j, ∥n∥) exp (−inTωs). (8)

III. FOURIER LIKELIHOOD ON IRREGULAR LATTICES

Although (6) enables fast estimation, its formulation relies
on a regular spatial grid, making it unsuitable for heteroge-
neous image regions with irregular shapes and different MF
properties. We develop a spectral likelihood capable of han-
dling irregular lattices by considering debiasing constants [19].
Assume that the log-leaders ℓ of an image F are a mixture of
K classes C1, ..., CK with a given MF parameter set per class:
θk ≜ [θk1 , θ

k
2 ], for k = 1, ...,K. For log-leader segmentation

purposes, consider the label vector z = [zTj1 , ..., z
T
j2
]T , where

zj = [zj,1, ..., zj,N2
j
] and zj,n denotes the label at position n

and scale j that maps the observation ℓj,n to a given class Ck.
To account for irregular domain shapes, we introduce an

indicator function Jj,n,k defined as:

Jj,n,k =

{
1, n ∈ Ij,k = {n ∈ N2

j |zj,n = k}
0, otherwise,

(9)

where Ij,k is the subset of sites in zj with label k at scale
j. Using this notation, the likelihood (4) considering K MF
classes is defined as:

p(ℓ|θ1, ...,θK , z) ≜
j2∏
j=j1

K∏
k=1

p
(
ℓj,{n∈Ij,k}|θk

)
, (10)

where p(ℓj,{n∈Ij,k}|θk) is the likelihood of a stationary zero
mean Gaussian process with covariance (3) observed at lo-
cations n ∈ Ij,k. Similar to (4), (10) poses challenges for
the estimation of θ1, ...,θK , and, deriving an approximation
analogous to (6) for (10) is not as straightforward. Fortunately,
by redefining (6) using the indicator function J for irregular
lattices, we can completely remove estimation bias in spatial
inference and tackle this problem [20].

Let x = [xT1 , ..., xTK ]T be the debiased log-leader vector of
Fourier coefficients with xk = [x1,k, ..., xS,k]T , where

xs,k ≜
1

bj,k

∑
n∈R
Jj,n,k

[
ℓj,n − tj,k

]
exp (−inTωs), (11)

where bj,k =
∑

n J
1/2
j,n,k and tj,k = bj,k

∑
n Jj,n,kℓj,n are

scaling constants for debiasing [20]. On the other hand, the
covariance matrix in (6) needs to be adjusted with a weight
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matrix Wj,k defined element-wise by

Wj,k(n1, n2) =
1

bj,k

∑
u,r∈Rj

Jj,(u,r),kJj,(u+n1,r+n2),k. (12)

The augmented Whittle likelihood for k-th class then becomes

p
(
xk,µk|θk1 , θk2 , z

)
∝

S∏
s=1

(θk2 )
−S exp

(
− 1

θk2
µHk Ws,kG

−1
2,sµk

)
× (θk1 )

−S exp
(
− 1

θk1
(xk − µk)

HWs,kG
−1
1,s(xk − µk)

)
,

(13)

where µk = [µT1,k, ..., µ
T
S,k]

T and Ws,k ≜ Wj,n,k. Similar to
(5), we have:

p(ℓ|Θ, z) ≈ p
(
x,µ|Θ, z

)
≜

K∏
k=1

p
(
xk,µk|θk, z

)
, (14)

where p
(
x,µ|Θ, z

)
is the spectral likelihood for all classes

and Θ = [θ1, ...,θK ] is the vector of MF parameters.

IV. BAYESIAN ESTIMATION AND GIBBS SAMPLER

A. Prior and Posterior Distribution

Multiscale graph label prior p(z|β). The prior distribution
of the labels zj ∈ {1, ...,K}N

2
j is modeled with a modified

version of the classical Potts-Markov random field (MRF) [21]

p
(
zj |z−j ,βj

)
=

1

C(βj)
exp

[
H(zj ,βj)

]
, (15)

where z−j indicates the labels on adjacent scales to j, i.e.,
zj−1, zj+1, H models variable relationships, and βj =
[βjxy, βs] are the granularity parameters controlling the amount
of spatial and inter-scale regularization, respectively. More-
over, C(βj) ≜

∑
zj exp[H(zj ,βj)] is a partition function,

which is in general intractable.
The prior (15) accounts for spatial and multiscale label

correlations, which we propose to model with the function
H(zj ,βj) defined as:

H(zj ,βj) = βjxyΦ(zj) + βsΨ(zj). (16)

Here Φ(zj) models spatial dependencies and is defined as:

Φ(zj) ≜
N2

j∑
n=1

∑
m∈V(n)

δ
(
zj,n − zj,m

)
, (17)

where V(n) contains the four spatial neighbors of n [22] δ is
the Kronecker function, and

Ψ(zj) ≜
N2

j∑
n=1

∑
p∈D(n)
q∈U(n)

δ
(
zj,n− zj+1,p

)
+ δ

(
zj,n− zj−1,q

)
(18)

models the inter-scale dependencies, where the functions D(n)
and U(n) map the pixel n at a given scale to its corresponding
parent or child coefficients, respectively. Fig. 1 (left) illustrates
the proposed multiscale graph label prior.

Fig. 1. Multiscale label graph structure (left) considered as a prior on the
log-leader coefficients (left). The label at position n (white circle) uses its
spatial and scale neighbors (gray dots) to update its value accordingly. This
structure is proposed considering the hierarchical structure of the log-leaders,
computed and plotted (right) from a 2D multifractal random walk (MRW).

Prior p(β) for granularity parameters. We propose
to also estimate the granularity parameters β using Gibbs
sampling methods studied in [23], [24], circumventing the
difficulties arising from the intractable constant C(βj). Ac-
cordingly, a uniform prior distribution U(0,Q)(β) is assumed
for the granularity parameters on the interval (0, Q), where
β = [βs, β

j1
xy, ..., β

j2
xy] gathers the whole set of parameters and

Q is a given constant related to the number of classes (see
[23] for details).
Prior p(Θ) for multifractal parameters. The natural con-
jugate priors for the multifractality parameters are inverse-
gamma distributions, with parameters αi,k, γi,k, for i = 1, 2,
typically set to small values, ensuring that they closely resem-
ble non-informative Jeffreys priors [1].
Posterior. The posterior distribution can be expressed as

p(Θ,µ, z,β|x) ∝ p
(
x,µ|Θ, z

)
p(Θ) p(z|β) p(β), (19)

where the spectral likelihood p
(
x,µ|Θ, z

)
is given in (14).

Unfortunately, estimators of the model parameters cannot be
obtained in closed form. Instead, we propose to generate sam-
ples that are asymptotically distributed according to the target
distribution using the Gibbs sampler [23]. Bayesian estimators
of the unknown model parameters are then approximated using
these samples.

B. Hybrid Gibbs Sampler and Bayesian estimators

The Gibbs sampler consists of generating samples from the
conditional distributions f(Θ|z,β, x,µ), p(z|x,µ,Θ,β), and
f(β|Θ, x,µ, z) = f(β|z), where f(β|z) is challenging but
can be approximated by a tractable sufficient statistic [23].
Sampling z. The conditional distribution of a single label
zj,n, j1 ≤ j ≤ j2, with all other labels z\(j,n) fixed is

zj,n | z\(j,n), x,µ,Θ,β ∝ p(zj,n|z\(j,n),β)p[ℓj,n|zj,n = k,Θ]
(20)

where p[ℓj,n|zj,n=k,Θ]∼N (0, σ2
j (θk)) follows a zero-mean

Gaussian distribution with variance σ2
j (θk) = θk2 + θk1 log 2

j ,
allowing (20) to be sampled efficiently using a checkerboard
strategy exploiting conditional independence among labels.
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Sampling Θ,µ. Given the labels, the MF parameters are
sampled according to the conditional distributions

µk|xk, θk1 , θk2 ∼ CN
(
θk1 G̃1,kxk,

(
(θk1 G̃1,k)

−1+ (θk2 G̃2,k)
−1
))
,

θk1 |xk,µk, θk2 ∼ IG
(
α1,k + S, γ1,k + ∥xk − µk∥G̃1,k

)
,

θk2 |xk,µk, θk1 ∼ IG
(
α2,k + S, γ2,k + ∥µk∥G̃2,k

)
, (21)

where ∥y∥G ≜ yHGy, G̃i,k = Ws,kG
−1
i,s , and IG, CN ,

respectively, denote inverse-gamma and complex Gaussian
distributions.
Sampling β. To generate samples for β, we use the tech-
nique proposed in [23], [24], which performs gradient descent
by approximating the intractable partition function C(βj) with
a given estimator. Steps 9-16 in Algo. 1 summarize the β
sampling strategy, where the auxiliary vector w distributed
according to the likelihood density p(z|β) is introduced for
the gradient approximation (see [23], [24] for details). The
statistics used here are the Potts potentials H , Φ and Ψ, defined
in (16-18). The differences between the statistics evaluated
in z and w are used to update the values of β, which are
constrained within (0, Q) via P[0,Q](x) (Steps 13, 16).
Bayesian estimators. Algorithm 1 summarizes the pro-
posed hybrid Gibbs sampler, where “hybrid” arises from the
heuristic approach for sampling the granularity parameters.
The outputs of the Gibbs sampler are used to approximate
the standard Bayesian estimators for MF the parameters (min-
imum mean square error (MMSE)) and labels (maximum a-
posteriori (MAP)).

V. NUMERICAL EXPERIMENTS

Monte Carlo simulation. To evaluate the proposed ap-
proach, we use 100 independent realizations of synthetic MF
images (2D multifractal random walks (MRW) [1], [25]), con-
taining an ellipse in the center with MF parameter θ11 = −0.08
and background with MF parameter θ11 = −0.02. A realization
of a corresponding 2D MRW and its log-leaders is displayed
in Fig. 1 (right) with the ground truth mask shown in Fig. 2.
MRWs are non-Gaussian processes with stationary increments,
designed to exhibit multifractal characteristics that resemble
those of log-normal cascades of Mandelbrot [26].

The proposed method is compared against the k-means
applied to patch-wise Bayesian MF estimation making use
of a smoothing gamma MRF prior as in [1] (K-GMRF),
and to Gabor filter features [27] (K-GF) (as an example of
classical multiscale texture features). Moreover, a pretrained
mask region-based convolutional neural network is used as a
benchmark [28] (Mask R-CNN). The label performance is
assessed using the dice score coefficient, DSC = 2TP/(2TP +
FP + FN), and the classification error, Error = (FP + FN)/(TP
+ TN + FP + FN), based on true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) predictions.
Estimations are made using a Daubechies mother wavelet with
Nψ = 1 vanishing moments, and with parameters set to
(αi,k, γi,k) = (10−3, 10−3), (j1, j2) = (1, 3), K = 2, Nv = 2,
Nm = 300 iterations and burn-in period Nb = 30.

Algorithm 1: Hybrid Gibbs sampling procedure
Input :
F ∈ RN×N (image); j1, j2 (initial,final scale); K (#
regions); Nm (# iterations); Nb (burn-in period); Nv (#
iterations for β).

1 Initialization: z(0), Θ(0), β(0)

2 Compute log-leaders ℓ of F
3 for t = 1 to Nm do
4 Compute x via (11)
5 Sample z(t)∼p

[
z|Θ(t−1), z(t−1),β(t−1), x

]
via (20)

6 Sample Θ(t)∼f
(
Θ|Θ(t−1), z(t),β(t−1), x

)
via (21)

7 if t < Nb then
▷ Granularity parameter sampling

8 for r = 1 to Nv do
9 η = 10 (t+ r − 1)−3/4

(∑j2
j=j1

Nj
)−1

10 for j = j1 to j2 do
11 Draw wj ∼ p[z|β(t)]
12 Set qj = Φ(zj)− Φ(wj)
13 (βjxy)

(r+1) = P[0,Q]

(
(βjxy)(r) + η qj

)
14 end
15 Set w← [wTj1 , ...,w

T
j2
]T

16 β
(r+1)
s =P[0,Q]

(
β
(r)
s +η

(
H(z,β)−H(w,β)

))
17 end
18 Set β(t) =

[
β
(r+1)
s , (βj1xy)

(r+1), ..., (βj2xy)
(r+1)

]
19 end
20 else
21 Set β(t) ← β(t−1)

▷ Fixed after burn-in period
22 end
23 end

Fig. 2. Segmentation results using the compared methods of the 2D MRW
from Fig. 1-right. The average DSC and error are shown for each result.

Segmentation performance. Fig. 2 shows the segmenta-
tion results for the single 2D MRW realization displayed in
Fig. 1 (right), where the best segmentation performance is
highlighted in bold. The proposed method yields an average
DSC of 0.895 and the lowest error percentage, significantly
surpassing the other approaches and providing better visual
results. The average segmentation performance is given in
Tab. I, confirming that the proposed method is interesting,
achieving the highest segmentation scores and smallest clas-
sification error.
MF parameter estimation performance. Tab. II compares
the average MF parameter estimation performance ([mean
(standard deviation)] and root-mean square error (RMSE))
when labels are known (top) or estimated (bottom). The results
show that in both cases that the estimation is very satisfactory,
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TABLE I
AVERAGE SEGMENTATION PERFORMANCE [MEAN (STD)].

Method DSCk=1↑ DSCk=2 ↑ ERROR↓ %
Proposed 0.909 (0.034) 0.752 (0.117) 13.2 (4.8)
K-GMRF 0.843 (0.027) 0.567 (0.097) 22.8 (3.7)
K-GF 0.683 (0.084) 0.443 (0.126) 39.6 (8.4)
Mask R-CNN 0.813 (0.042) 0.300 (0.250) 28.5 (0.1)

∗ ↑/↓ indicate the higher/lower, the better.

TABLE II
AVERAGE MF PARAMETER ESTIMATION PERFORMANCE.

k True θk1 MEAN (STD) RMSE
labels 1 −0.02 −0.034 (0.005) 0.015
known 2 −0.08 −0.087 (0.016) 0.018

labels 1 −0.02 −0.033 (0.006) 0.014
estimated 2 −0.08 −0.113 (0.025) 0.041

with overall slightly larger RMSE when labels are estimated,
as expected. Moreover, results with known labels are similar
to those obtained for single homogeneous textures [1], [6],
confirming that the model proposed in Sec. III efficiently
handles heterogeneous MF textures.

Overall, these results highlight that segmenting MF textures
is a challenging task, even for trained models such as Mask
R-CNN. Even so, the proposed method effectively identifies
regions with different MF parameters and manages to estimate
these parameters efficiently.

VI. CONCLUSIONS

This paper presented a Bayesian multifractal segmentation
approach that models heterogeneous textures using wavelet
leader multifractal analysis, a multiscale Potts prior and
Fourier likelihood for irregular lattices. Our Bayesian frame-
work efficiently computes the unknown model parameters
using Gibbs sampling. Numerical experiments show the good
performance of the proposed approach for image segmenta-
tion, surpassing local multifractality-based methods and a deep
learning-based strategy. Future work includes extending the
model to higher-dimensional models, as in [29], [30].
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