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Abstract—A class of iterative Bayesian estimation methods
known as Type I methods use a variational representation of the
posterior distribution. However, Type I methods can exhibit slow
convergence for a family of variational representations referred
to as convex/location representation. We analyze the convergence
behavior of Type I methods by interpreting them as an iterative
maximization of a dual objective function involving a lineariza-
tion. We then propose a modified method that avoids the lineari-
zation and allows a coordinatewise maximization. We demon-
strate the advantages of the proposed method in the context of
image restoration under Poisson noise.

Index Terms—Bayesian estimation, Type I estimation, half-
quadratic minimization, variational representation, convex rep-
resentation, location parameterization, image restoration.

I. INTRODUCTION

Variational representations provide a powerful framework
for Bayesian estimation in a wide class of statistical models
[1], [2]. In this framework, certain factors of the poste-
rior distribution are expressed by a variational representation
involving a variational parameter. This allows the use of
computationally efficient iterative methods that are known as
Type I methods [1], [2] (or half-quadratic minimization or
gradient linearization [3], [4]). These methods are useful in
many applications including sparse signal reconstruction [5],
image restoration [6], image deconvolution [7], and optical
flow estimation [8].

A specific variational representation, to be referred
to as convex/location representation, expresses the fac-
tors of the posterior distribution as the supremum of a
Gaussian probability density function (pdf) weighted by a
nonnegative function, with the mean (location) of the Gaussian
pdf given by the variational parameter. As shown in [3],
the scale η of the Gaussian pdf has a direct effect on the
convergence speed of the Type I method. In particular, for a
large η, the convergence can be prohibitively slow.

In this paper, we analyze the convergence of Type I methods
and present a modified method with significantly faster conver-
gence for large η. We show that Type I methods can be viewed
as an iterative maximization of a dual objective function,
where a linearization is used in each iteration. We argue that
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the linearization is responsible for slow convergence in models
where η is large. We then propose a new coordinatewise
method for maximizing the dual objective function without a
linearization. For many practically useful models, each coor-
dinate update amounts to finding the roots of a polynomial of
small degree, which results in a low computational complexity.
We apply our method to the restoration of images corrupted
by Poisson noise and demonstrate that it converges faster than
the Type I method, especially when η is large.

The rest of this paper is organized as follows. The prob-
abilistic model and the convex/location variational represen-
tation are described in Sections II and III, respectively. In
Section IV, we review Type I estimation and present a new
interpretation of the Type I method. In Section V, we propose
a new method with faster convergence. Finally, simulation
results are presented in Section VI.

II. PROBABILISTIC MODEL

Bayesian estimation of an unknown random vector x∈Rm

from an observed (continuous or discrete) random vector y
relies on the posterior pdf p(x|y) [9, Sec. 2.4.2]. Following
[10], we assume that p(x|y) admits a factorization of the form

p(x|y) = 1

Z(y)

N∏
i=1

Ψi

(
ai(y)

Tx− bi(y);y
)
, (1)

with partition function Z(y)<∞ (which ensures that p(x|y)
is a proper pdf), “potential functions” (PFs) Ψi(· ;y) : R →
R>0, and ai(y) ∈ Rm and bi(y) ∈ R, for i = 1, . . . , N .
As we will see in Section III, the desired convex/location
representation is obtained by considering PFs of the form

Ψi(ξ;y) ≜ exp
(
−ηi

(
ξ2−2fi(ξ;y)

))
, ξ∈R , (2)

with scale parameters ηi > 0 and functions fi(· ;y) : R→ R
that are all strictly convex and differentiable. For later use,
we define A(y) ≜

(
a1(y) · · · aN (y)

)T∈ RN×m and b(y) ≜
(b1(y) · · · bN (y))T ∈ RN. The dependence of Ψi , fi , A, ai ,
b, and bi on the observation y will no longer be indicated in
what follows.

The probabilistic model (1) requires that Z(y)<∞ for all
y. In [2], we show the following condition: For the pdf (1),
Z(y)<∞ if A has full column rank and

∫
RΨi(ξ)dξ < ∞

for i= 1, . . . , N .
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III. CONVEX/LOCATION REPRESENTATION

We will next express the PFs Ψi and the posterior pdf
p(x|y) in a way that involves a variational parameter. We
first review some basic facts of convex analysis. The convex
conjugate f⋆ : F⋆ → R of a convex function f : R → R is
defined as [11, Sec. 3.3]

f⋆(λ) ≜ sup
ξ∈R

(
λξ−f(ξ)

)
,

for all λ∈F⋆≜ {λ∈R : supξ∈R
(
ξλ−f(ξ)

)
<∞}. The con-

vex conjugate f⋆ is a convex function. If f is strictly convex,
then f⋆ is differentiable [12, Th. 26.3]. If, in addition, f is
differentiable, then the derivatives of f and f⋆ are related as
follows [12, Cor. 23.5.1]: for any ξ∈R and λ∈F⋆,

f⋆′(λ) = ξ if and only if f ′(ξ) = λ. (3)

Let us now consider a PF of the form (2), i.e., Ψi(ξ) =
exp

(
−ηi

(
ξ2− 2fi(ξ)

))
for ξ ∈ R, with ηi > 0 and a strictly

convex and differentiable function fi : R→R. As we show in
[2], Ψi(ξ) can be expressed as

Ψi(ξ) = sup
λ∈F⋆

i

Gi(ξ, λ)φi(λ) , (4)

where F⋆
i ≜ {λ∈R : supξ∈R

(
ξλ−fi(ξ)

)
<∞} and

Gi(ξ, λ) ≜ exp
(
−ηi(ξ−λ)2

)
, (5)

φi(λ) ≜ exp
(
ηi
(
λ2−2f⋆

i (λ)
))

. (6)

According to (5), Gi(· , λ) is a Gaussian pdf up to normaliza-
tion for any λ ∈ F⋆

i ; furthermore, the “variational parameter”
λ affects the location of Gi(· , λ). We will therefore call (4)–(6)
the convex/location representation of Ψi(ξ).

Next, we consider the posterior pdf in (1) and express all
PFs Ψi(ξ) by their convex/location representation. Inserting
(4) into (1) then yields a convex/location representation of the
posterior pdf p(x|y) according to

p(x|y) = sup
λ∈F⋆

h(x,λ ;y) , (7)

where λ ≜ (λ1 · · ·λN )T, F⋆ ≜ F⋆
1 × · · · ×F⋆

N , and

h(x,λ ;y) ≜
1

Z(y)

N∏
i=1

Gi(a
T
ix− bi, λi)φi(λi) , (8)

with all Gi and φi given by (5) and (6), respectively. We
will show in the next two sections that the convex/location
representation allows for efficient estimation methods.

IV. TYPE I ESTIMATION

A. Review of the Type I Estimation Method

An important Bayesian estimator is the maximum a poste-
riori (MAP) estimator

x̂MAP = argmax
x∈Rm

log p(x|y) . (9)

Type I methods offer an efficient approach to MAP estimation
that leverages the convex/location variational representation of
p(x|y) in (7) [1]. Indeed, using (7) and the fact that log is a
strictly increasing function, we can rewrite (9) as

x̂MAP = argmax
x∈Rm

sup
λ∈F⋆

log h(x,λ ;y) . (10)

This joint maximization is now performed by repeatedly
maximizing log h(x,λ ;y) alternately with respect to x and
λ. The l-th iteration of the Type I method thus reads

x̂(l+1) = argmax
x∈Rm

log h(x, λ̂(l);y) , (11)

λ̂(l+1) = argmax
λ∈F⋆

log h(x̂(l+1),λ ;y) ,

with h(x,λ ;y) given by (8). As we show in [2], these max-
imization problems have the following closed-form solutions:

x̂(l+1) = J−1ATE (b+ λ̂(l)) , (12)

λ̂
(l+1)
i = f ′

i(a
T
i x̂

(l+1)− bi) , i= 1, . . . , N, (13)
where

J ≜ ATEA , E ≜ diag{η1, . . . , ηN} . (14)

Note that J is positive-definite since A has full column rank
(cf. our condition for Z(y) < ∞ in Section II) and ηi > 0,
i = 1, . . . , N . The sequence

(
x̂(l)

)∞
l=1

converges to a local
maximum or saddle point of p(x|y) for arbitrary initialization
λ̂(1) [13], [14].

B. An Alternative Method

Next, we consider an alternative approximate MAP esti-
mation method, which will be seen in Section IV-C to lead
to a new interpretation of the Type I method. The idea is to
exchange in (10) the order of the two maximization steps. That
is, the method first calculates an estimate of λ according to

λ̂ = argmax
λ∈F⋆

sup
x∈Rm

log h(x,λ ;y) , (15)

and then obtains an estimate of x by solving x̂ =
argmaxx∈Rm log h(x, λ̂ ;y) (cf. (11)), which results in x̂ =

J−1ATE (b+ λ̂) (cf. (12)). We can write (15) as

λ̂ = argmax
λ∈F⋆

g(λ) , (16)

with the “dual” objective function [11, Ch. 5]

g(λ) ≜ sup
x∈Rm

log h(x,λ ;y) . (17)

In the Appendix, we derive the closed-form expression

g(λ)
c
= λTPλ+ 2λT(P−E)b− 2

N∑
i=1

ηif
⋆
i (λi) , (18)

where c
= denotes equality up to an additive constant and

P ≜ EAJ−1ATE. (19)

An efficient iterative method for solving the maximization
problem (16) can be obtained as follows. Let λ̂(l+1) denote the
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iterate of λ calculated at the l-th iteration. We first linearize
the quadratic term λTPλ occurring in (18) around λ̂(l), i.e.,

λTPλ ≈ λ̂(l)TP λ̂(l)+ 2λ̂(l)TP (λ−λ̂(l)) (20)
c
= 2λ̂(l)TPλ .

Inserting this approximation into (18) yields the following
approximation of the dual objective function g(λ):

g̃(λ; λ̂(l))
c
= 2λ̂(l)TPλ+ 2λT(P−E)b− 2

N∑
i=1

ηif
⋆
i (λi) .

(21)
Substituting g̃(λ; λ̂(l)) for g(λ) in (16), we obtain the new
iterate of λ as

λ̂(l+1) = argmax
λ∈F⋆

g̃(λ; λ̂(l)) . (22)

This maximization problem is simpler than (16). Indeed,
g̃(λ; λ̂(l)) is concave in λ, whereas g(λ) contains both con-
cave and convex terms. Thus, we can find the maximum of
g̃(λ; λ̂(l)) by setting the gradient of g̃(λ; λ̂(l)) to zero. Writing
P =EQ (with Q ≜ AJ−1ATE, cf. (19)) and recalling that
E =diag{η1, . . . , ηN}, Eq. (21) can be rewritten as

g̃(λ; λ̂(l))
c
= 2

N∑
i=1

ηi g̃i(λi; λ̂
(l)) , (23)

with

g̃i(λi; λ̂
(l)) ≜ λ̂(l)Tqiλi+ λi (q

T
i b− bi)−f⋆

i (λi) , (24)

where qT
i denotes the i-th row of Q. According to (23) and

(24), setting the gradient of g̃(λ; λ̂(l)) to zero is equivalent
to the N scalar equations d

dλi
g̃i(λi; λ̂

(l)) = 0 and, in turn,
qT
i (b + λ̂(l)) − bi − f⋆′

i (λi) = 0, for i = 1, . . . , N . Thus,
the solutions λ̂

(l+1)
i satisfy f⋆′

i (λ̂
(l+1)
i ) = qT

i (b + λ̂(l)) − bi.
Invoking (3), we finally obtain the closed-form expressions

λ̂
(l+1)
i = f ′

i

(
qT
i (b+ λ̂(l))− bi

)
, i= 1, . . . , N. (25)

We conclude that, as a result of our linearization of λTPλ
in (20), the maximization problem (22) admits an efficient
coordinatewise solution. As shown in [15], the sequence(
λ̂(l)

)∞
l=1

obtained by (22) converges to a local maximum or
saddle point of g(λ), at thus it attempts to solve the original
problem (16), (17).

C. A New Interpretation of the Type I Method

The i-th row of Q = AJ−1ATE is qT
i = aT

i J
−1ATE.

Inserting this expression into (25) yields an expression of
λ̂
(l)
i that is equivalent to the expression obtained by inserting

(12) into (13). This equivalence provides the following new
interpretation of the Type I method: each iteration maximizes
a concave approximation g̃ of the dual objective function g
that is obtained by a linearization of the quadratic term λTPλ
occurring in g.

Next, we present an analysis of the convergence speed of
the Type I method that is based on this interpretation. Because
g̃(λ; λ̂) was obtained from g(λ) by linearizing λTPλ in (18),

the approximation error ε(λ; λ̂) ≜ g(λ)− g̃(λ; λ̂) is equal to
the difference between λTPλ and its linearized version on the
right-hand side of (20), i.e.,

ε(λ; λ̂) = λTPλ−
(
λ̂TP λ̂+ 2λ̂TP (λ−λ̂)

)
, (26)

where we replaced λ̂(l) by λ̂ to simplify the notation. Since
λTPλ is a quadratic function, it equals its second-order
Taylor series expansion, λ̂TP λ̂+ 2λ̂TP (λ−λ̂) + (λ−λ̂)TP
× (λ−λ̂). Inserting this expression into (26) yields ε(λ; λ̂) =
(λ−λ̂)TP (λ−λ̂), or, with a slight abuse of notation,

ε(λ̃) = λ̃TP λ̃ , (27)

where λ̃ ≜ λ−λ̂. For fixed λ̃, this approximation error grows
with the scale parameters ηi. To see this, let us scale all ηi,
or equivalently the matrix E =diag{η1, . . . , ηN}, by a factor
σ>0. Substituting σE for E in the expression for P in (19)
while recalling (14) yields Pσ ≜ σEA(ATσEA)−1ATσE =
σP , and hence the approximation error in (27) is changed to
εσ(λ̃) ≜ λ̃TPσλ̃ = σλ̃TP λ̃ = σϵ(λ̃). Thus, larger values of
ηi can be expected to result in a larger approximation error. We
conjecture that the larger approximation error, in turn, results
in a slower convergence of the Type I method. This conjecture
is supported by the theoretical convergence rates of [3] as
well as by our experimental results in Section VI, both of
which demonstrate that larger values of ηi lead to a slower
convergence of the Type I method.

V. THE PROPOSED METHOD

The above analysis suggests a relation between the lin-
earization underlying the Type I method and the method’s
slow convergence for large ηi. We now propose an iterative
method that avoids the linearization but is still able to solve
the maximization in (16) coordinatewise. In the l-th iteration,
all λi are sequentially updated according to

λ̂
(l+1)
i = argmax

λi∈F⋆
i

g
(
λi ; {λ̂j}j ̸=i

)
, i= 1, . . . , N, (28)

where g
(
λi ; {λ̂j}j ̸=i

)
is the dual objective function g(λ) in

(16) restricted such that λj = λ̂j for all j ̸= i; here, λ̂j is the
last available iterate of λj (calculated at iteration l−1 or l).

Let pij denote the (i, j)-th entry of P and θi the i-th entry
of θ≜ (P−E)b. From (18), we obtain

g
(
λi ; {λ̂j}j ̸=i

) c
= piiλ

2
i + 2αiλi− 2ηif

⋆
i (λi) ,

with αi ≜ θi +
∑

j ̸=i λ̂j pji . To solve (28), we set
d

dλi
g
(
λi ; {λ̂j}j ̸=i

)
to zero, which gives f⋆′

i (λi) = 1
ηi
(piiλi

+ αi). By (3), this is equivalent to

f ′
i

(
piiλi + αi

ηi

)
= λi . (29)

If f ′
i is a polynomial of degree at most three, this equation

can be solved in closed form; otherwise, efficient numerical
methods are available. A solution λ̂i of (29) is a (possibly
local) maximizer of g

(
λi ; {λ̂j}j ̸=i

)
if and only if

d2

dλ2
i

g
(
λi ; {λ̂j}j ̸=i

)∣∣∣∣
λ̂i

= 2
(
pii−ηif

⋆′′
i (λ̂i)

)
< 0 ,
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where we assumed that f⋆
i is twice differentiable. Here, f⋆′′

i

can be evaluated as follows. Differentiating the left-hand and
right-hand parts of (3) and combining the resulting equations
yields 1 = f ′′

i (ξ̂i)f
⋆′′
i (λ̂i) or equivalently f⋆′′

i (λ̂i) =
1

f ′′
i (ξ̂i)

,

for any ξ̂i satisfying λ̂i = f ′
i(ξ̂i). Thus, evaluation of f⋆′′

i (λ̂i)
amounts to solving the equation f ′

i(ξ̂i) = λ̂i for ξ̂i. Note that
there is a unique solution since f ′

i is strictly increasing.

VI. SIMULATION STUDY

We compare the convergence speed of the Type I method
and the proposed method for synthetic data whose generation
is motivated by the problem of restoring images from a (po-
tentially incomplete) set of photon-limited measurements [16].

A. Simulation Setup

Let x = (x1 · · · xm)T with xk > 0 represent (via column-
wise or rowwise stacking) the true two-dimensional image,
and let y = (y1 · · · ym)T with yk ∈ {0, 1, 2, . . .} represent a
measured discrete-valued image. Each entry yk of y is Poisson
distributed [16] with intensity xk, i.e.,

p(yk|xk) = Poisson(yk ;xk) . (30)

Furthermore, yk is conditionally independent, given xk, of yl
and xl for all l ̸=k. The prior pdf is a truncated version of the
Gaussian pdf

pG(x) ∝ exp

(
−1

2

( 2m∑
j=1

(gT
jx)

2 + (1Tx−mγ)2
))

, (31)

where gj is defined such that gT
jx yields the vertical or

horizontal (depending on j) difference between adjacent pixels
of the image represented by x, 1 is the all-ones vector of
length m, and γ > 0 is a parameter. This prior promotes
smoothness of the image represented by x (via

∑2m
j=1(g

T
jx)

2)
and closeness of

∑m
k=1xm to mγ (via (1Tx−mγ)2). We can

rewrite (31) as

pG(x) = N (x ;mγΣ1,Σ) , with Σ ≜ (GTG+11T)
−1
, (32)

where G is the matrix with rows gT
j . Note that GTG +11T

is nonsingular because 1 spans the nullspace of G. When
sampling from pG(x), we reject nonpositive samples xk in
order to satisfy the condition xk > 0; this is equivalent to
replacing (32) by a truncated Gaussian pdf.

While we use this model to generate the data, we cannot
use it in the estimation methods because the Poisson likelihood
function p(yk|xk) does not admit a convex/location representa-
tion. Instead, following [6], we use the Anscombe likelihood
function with a quadratic extension, which provides a good
approximation of the Poisson likelihood function, especially
for large intensity xk. Thus, p(yk|xk) is defined by

− log p(yk|xk)

c
=

{
β(xk, yk), xk≥0 ,

β(0, yk)+β′(0, yk)xk+
1
2 β

′′(0, yk)x2
k, xk<0 ,

(33)
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Fig. 1: Iterated estimates of λ for 30 iterations of the Type I method (blue
bullets) and the proposed method (red squares). The contour plot shows the
dual objective function g(λ) to be maximized (see (16)–(18)).

with β(x, y) ≜ 2
(√

y+ 3
8 −

√
x+ 3

8

)2
. Furthermore, we use

the improper prior

p̃(x) =

2m∏
j=1

p̃j(x) , with p̃j(x) = exp
(
−1

2
(gT

jx)
2
)
. (34)

In contrast to (32), this prior promotes only smoothness, while
the sum of the xk does not enter. This is a common practice
followed in many image processing applications [3], [14].

The posterior pdf p(x|y) ∝ p(y|x) p̃(x) induced by (33)
and (34) can be written in the form (1) by equating the factors
Ψi(a

T
ix− bi) for i = 1, . . . ,m with p(yi|xi) in (33) and for

i=m+1, . . . , 3m with p̃i−m(x) in (34). This is achieved by
suitably defining ai, bi, and Ψi. The PFs Ψi corresponding to
p(yi|xi) and p̃j(x) admit the convex/location representation

(4)–(6) with ηi>

√
yi+3/8

2(3/8)3/2
and ηj>1, respectively [2].

We implemented the two methods in C on an Intel(R)
Core(TM) i5-7500 CPU with clock rate 3.40 GHz. For numer-
ical and linear algebra operations, we used the GNU Scien-
tific Library (www.gnu.org/software/gsl) and the OpenBLAS
library (www.openmathlib.org/OpenBLAS). The inverse J−1

was precomputed before running the iterations; thus, one
iteration of the Type I method and the proposed method
involves, respectively, one matrix-vector product and m vector-
vector products. We note that when J has a special structure,
precomputing J−1 may be disadvantageous because it may
be possible to efficiently compute the updates of the Type I
and/or the proposed method by other means.

B. Simulation Results

Fig. 1 visualizes the convergence of the two methods for
images of size 2× 1 (thus, m = 2) and γ = 5. One can see
that the proposed method converged in around seven iterations
whereas the Type I method did not converge in 30 iterations.

Next, we consider images of size 50×50 (thus, m=2500)
and γ in the range [1, 10]. According to (32), increasing γ
results in a larger prior mean of x, which, because of the

condition ηi>

√
yi+3/8

2(3/8)3/2
combined with (30) and the fact that

the mean of Poisson(yi ;xi) is xi, necessitates larger values
of ηi. Fig. 2 shows the runtime and number of iterations,
averaged over 20 realizations of y, that are required by the two

2430



1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

0

120

240

360

480

600

γ

ru
nt

im
e

[s
]

nu
m

be
ro

fi
te

ra
tio

ns

runtime – Type I
runtime – proposed
# iter. – Type I
# iter. – proposed

Fig. 2: Mean runtime and number of iterations required by the Type I method
and the proposed method to converge, for different values of γ.

methods to converge in the sense that ∥λ̂(l+1)−λ̂(l)∥2

∥λ̂(l)∥2
< 10−5.

(For a threshold less than 10−5, we observed that the Type I
method sometimes does not converge.) One can see that the
runtime and number of iterations of the proposed method
are significantly smaller than those of the Type I method,
and they increase significantly less fast with growing γ. In
further experiments with smaller and larger synthetic images,
we observed that for γ = 10 the proposed method always
converged at least twice as fast as the Type I method. We
finally remark that in our experiments, we always observed
the two methods to converge to the same point.

VII. CONCLUSION

The Type I estimation method for Bayesian models using
the convex/location representation converges slowly in the case
of large scale parameters. Building on a new interpretation
of the Type I method that provides insight into this issue,
we proposed a new estimation method that maximizes a dual
objective function coordinatewise. For many practical models,
this method converges faster and is less complex than the
Type I method. These advantages were verified for the problem
of image restoration under Poisson noise.

Possible directions for future research include modifica-
tions of the proposed method that are able to leverage a
special structure of the matrix J , such as tridiagonal, block-
tridiagonal, Toeplitz, or block-Toeplitz. Our preliminary results
indicate good results for tridiagonal J . It would also be
interesting to study the convergence of the proposed method
for other relevant data distributions such as Rayleigh, Rice,
or approximations thereof, and to evaluate the method on real
data.

APPENDIX

To derive (18), we first insert (8) into (17), which yields

g(λ)
c
=

N∑
i=1

logφi(λi)+ sup
x∈Rm

N∑
i=1

log Gi(a
T
ix−bi, λi) . (35)

Using (6), the first term becomes

N∑
i=1

logφi(λi) = λTEλ− 2

N∑
i=1

ηif
⋆
i (λi) , (36)

and using (5), the second term becomes

sup
x∈Rm

N∑
i=1

log Gi(a
T
ix− bi, λi)

= − inf
x∈Rm

(Ax−b−λ)TE (Ax−b−λ)

= − inf
x∈Rm

(x−µ)TJ(x−µ)− µTJµ+ (b+λ)TE(b+λ) ,

where
µ ≜ J−1ATE (b+λ) . (37)

Using the fact that infx∈Rm(x−µ)TJ(x−µ) = 0 because J
is positive-definite, we obtain further

sup
x∈Rm

N∑
i=1

log Gi(a
T
ix− bi, λi)

= µTJµ− (b+λ)TE(b+λ)

= λT(P−E)λ+ 2λT(P−E)b+ bT(P−E)b , (38)

where the final expression was obtained by inserting (37) and
(14) and using (19). Finally, inserting (36) and (38) into (35)
yields (18).
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