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Abstract—This paper presents a denoising method for at-
tributes on graphs by using a local-and-global smoothness as-
sumption. Restoration of attributes on graphs is one of the
most fundamental studies in graph signal processing. Many work
assumes graphs are noiseless (while signal values are noisy),
however, both of the graphs and signal values may be noisy. In
this paper, we address denoising of attributes by assuming local-
and-global smoothness nature of graph signals: They are locally
smooth on the graph and are globally smooth in an appropriate
space regardless of the graphs. Since the global smoothness is
not affected by the degradation of graphs, the proposed method
is robust to it. We formulate a corresponding convex problem
that can be iteratively solved with a monotone operator splitting
algorithm. Moreover, we unroll the iterations to apply deep
algorithm unrolling (DAU), and these internal parameters are
automatically turned from the training data. In experiments
for denoising of color point clouds, our method exhibits higher
restoration performance in PSNR than existing model-based and
DAU-based methods even when graphs are obtained in a noisy
environment.

Index Terms—Graph signal processing, attribute denoising,
monotone operator splitting, deep algorithm unrolling

I. INTRODUCTION

Irregularly-distributed measurements, i.e., attributes or fea-
tures, are used in many applications like those in sensor
networks, IoT, and point clouds, to name a few [1], [2].
Interconnectivity among samples can often be utilized during
restoration processes. For example, attributes associated with
sensor networks and point clouds exhibit spatial connectivity,
which can typically be represented by a graph.

Attributes on graph nodes can be represented by a set of
graph signals, where edges represent the relationships between
the samples (i.e., the nodes). In contrast to standard signals on
a regular grid such as images, graph signal processing (GSP)
explicitly exploits the underlying structure of attributes [3].
GSP is highly effective for analyzing data that are irregularly
distributed in space [4].

One major challenge in GSP is denoising of graph-
structured attributes. For example in point clouds, individual
points may be degraded by lighting distortions, environmen-
tal noise, and/or errors in camera calibration [5], [6]. Such
degradations corrupt the attributes. Furthermore, during the
measurement process, spatial coordinates themselves may also
be noisy: It leads to noisy graphs. However, many GSP-based
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Fig. 1: LGS assumption considered in this paper. Our method
aims to restore graph signals at the intersection of outputs from
local and global smoothness assumptions.

signal restoration methods only consider the case for noiseless
graphs [2], [7].

In this paper, to address the above-mentioned challenges,
we propose a denoising method for attributes on graphs by
considering the following local-and-global smoothness (LGS)
assumption:
Assumption 1 (Local smoothness on graphs): For graph-

structured attributes, two signal values connected with a
large edge weight are usually similar. Therefore, the local
smoothness assumption is often utilized for graph-based
restoration [2], [7]. However, the sole use of it will limit
the restoration accuracy under a noisy graph case, which
is often obtained from corrupted coordinates.

Assumption 2 (Global smoothness of attributes): In this
paper, we also consider global smoothness as well as the
local smoothness. Since the global smoothness assumes
that the attributes are smooth in an appropriate space, this
assumption is helpful for attribute denoising if graphs are
noisy because the global smoothness assumption does not
depend on the graphs.

The LGS assumption is illustrated in Fig. 1. While many GSP
methods use Assumption 1, and Assumption 2 is also utilized
in various image processing methods like [8], they have not
been integrated in GSP so far.

In the proposed method, we first formulate a convex graph
signal denoising problem based on the LGS assumption. The
local smoothness assumption is represented by a regularization
term taking into account total variation of attributes on a given
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graph. The global smoothness assumption is translated to the
regularization term of the Euclidean distance matrix among
attributes.

In fact, the minimization problem is solved by a monotone
operator splitting (MOS) algorithm [9], [10]. Moreover, we
unroll its iterations and train the regularization parameters by
deep algorithm unrolling (DAU) [11].

In experiments on color point cloud denoising, our method
exhibits better restoration performance in PSNRs than existing
model-based and DAU-based methods.

Notation: [A]n,m denotes the (n,m) element of A. A
weighted undirected graph is denoted by G = (V, E), in which
V and E are sets of nodes and edges, respectively. We use a
weighted adjacency matrix W for representing the connection
between nodes, where [W]m,n ≥ 0 is the edge weight between
the mth and nth nodes. The weighted graph incidence matrix
is denoted by B ∈ R|E|×N . We index the set of edges as
E = {es}|E|s=1. Then, the (s, t) entry of B is

[B]s,t =


√
[W]p,q es = (vp, vq) and t = p,

−
√
[W]p,q es = (vp, vq) and t = q,

0 otherwise,
(1)

where vp is the pth node. We also use ∥ · ∥1 for ℓ1 norm and
∥ · ∥F for Frobenius norm.

II. RELATED WORK

In this section, we review existing graph-based sig-
nal/attribute denoising techniques. Basically, they assume
smoothness of attributes on a local region and perform (it-
erative) low-pass filtering on a graph. These methods can be
classified into three categories: Model-based restoration, deep
learning–based restoration, and integrated restoration.

A. Model-based Restoration

Model-based approaches typically formulate a (convex)
optimization problem that includes a data fidelity term and
regularization term(s) [12]. Signal priors are required in the
formulation. The widely-used prior is local smoothness and it
can be defined as follows:

Assumption 1 (Local smoothness assumption with total vari-
ation). Let X = [x1, . . . ,xN ]⊤ ∈ RN×Q be the original
attributes with the number of nodes N and the number
of attributes/measurements Q. Signals satisfying the local
smoothness assumption are defined as follows:

TLS = {X ∈ RN×Q | ∥BX∥1 ≤ δl}, (2)

where δl > 0.

Other definitions of smoothness like in [2] can also be
considered. A lot of model-based methods stem from this
assumption. While they are completely interpretable, they
often require many iterations for convergence and careful
tuning of regularization parameters.

B. Deep Learning-based Restoration

For irregularly-distributed attributes, graph neural networks
are often applied [13], [14]. Graph convolutional networks
(GCNs) are one of them, which are an extension of convo-
lutional neural networks [13].

GCNs learn the neural network parameters from the data
by minimizing a loss function. However, these methods often
lack interpretability and require large training datasets. Note
that, for the graph-structured data, we usually do not have
enough measurements for training many parameters in neural
networks, especially for the noisy graph cases.

C. Integrated Restoration

To address the above-mentioned challenges, intermediate
solutions between the model- and deep learning-based ap-
proaches have attracted researchers. This approach typically
uses “black-box” denoisers in its iterative algorithm based on
convex optimization. Well-known approaches are plug-and-
play (PnP) [15] and regularization-by-denoising [16]. They
were first proposed in image processing, and are now utilized
in graph-based signal analysis [7], [17].

Furthermore, they can be combined with a deep learning
methodology as DAU [11]. Intuitively, it trains parameters
in an iterative (convex) optimization algorithm by utilizing
deep learning techniques like backpropagation. As a result, the
trained regularization parameters are different in all iterations
(corresponding to layers). This maintains the interpretability
of the algorithm and practically decreases the number of
iterations.

DAU for graph-structured signals have been studied in [7],
[17]. A method in [7] is the unrolled PnP algorithms and
presents the state-of-the-art restoration performance for graph
signals. While the robustness of graph perturbations is studied
in [7], it still assumes that graphs are noiseless.

In summary, existing methods highly depend on local
smoothness on a given (noiseless) graph. If the graphs are
noisy, they will limit the restoration performance. Therefore,
one needs to adopt an alternative formulation/methodology
that can be combined with the local smoothness assumption.
In the following, we propose a denoising method for attributes
when graphs may be corrupted by noise.

III. DENOISING FOR ATTRIBUTES WITH LGS
ASSUMPTION

In this section, we present the proposed denoising method
based on the LGS assumption. First, we introduce the signal
observation model and assumptions. Second, minimization
problems based on the two assumptions are integrated into one
convex minimization problem. Third, we derive the iterative
denoising algorithm. Finally, we unroll the iterations to make
the algorithm trainable by using DAU.

A. Signal Observation Model and LGS Assumption

In general, the attributes measured in a noisy condition are
given as follows:

Y = X+N, (3)
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where N is a noise matrix whose entry is an i.i.d. random
Gaussian noise.

Here, we mathematically formulate our LGS assumption
and corresponding signal denoising problems.
Local Smoothness Assumption: If we only consider the local
smoothness assumption on the graph, the signal denoising
problem is formulated as follows:

X̃1 = argmin
X1

∥X1 −Y∥2F + λ1∥BX1∥1, (4)

where λ1 > 0 is the regularization parameter. The above
equation is widely used and can be found anywhere [2], [7].
As previously mentioned, if G includes noise, B must be
noisy. Therefore, the regularization term in (4) does not work
properly due to the noisy B.
Global Smoothness Assumption: First, the global smooth-
ness assumption is defined as follows:

Assumption 2 (Global smoothness assumption with total
variation). Let X ∈ RN×Q be the observed attributes. The
global smoothness assumption is defined as

TGS = {X ∈ RN×Q | ∥D(X)∥1 ≤ δg}, (5)

where D(X) := (I◦XX⊤)11⊤+11⊤(I◦XX⊤)−2XX⊤ ∈
RN×N (1 is the all one vector) is the Euclidean distance matrix
([D(X)]i,j = ∥xi − xj∥2) for the entries in X and δg > 0.

With the sole use of Assumption 2, we can consider the
following minimization problem:

X̃2 = argmin
X2

∥X2 −Y∥2F + λ2∥D(X2)∥1, (6)

where λ2 > 0 is the parameter. It is the same as (4) except
for the regularization term. The problem (6) can perform
denoising regardless of whether the graphs are noisy or not,
since it does not utilize the graph.

B. Problem Formulation

We formulate a convex optimization problem taking into
account (4) and (6) simultaneously.

First, we simply add (4) and (6) to utilize both local
smoothness and global smoothness assumptions. As a result,
we have the following optimization problem:

min
X1,X2

2∥X1 −Y∥2F + 2∥X2 −Y∥2F

+ λ1∥BX1∥1 + λ2∥D(X2)∥1
s.t. X = Y, X1 = X, X2 = X.

(7)

We then convert (7) into an unconstrained convex problem by
introducing a fidelity term ∥X1 −X2∥2F :

min
X1,X2

2∥X1 −Y∥2F + 2∥X2 −Y∥2F + 2∥X1 −X2∥2F

+ λ1∥BX1∥1 + λ2∥D(X2)∥1 + λ3∥X1 −X2∥1,
(8)

where λ3 > 0 is the parameter controlling the similarity
between the output signals based on the local and global
smoothness. The term ∥X1−X2∥1 is inspired by the penalty
term of the elastic net regularization [18].

Algorithm 1: Iterative algorithm to solve (9)

Input: X
(0)
1 , X(0)

2 , A1
(0), A(0)

2 , A(0)
3

Output: X
(n)
1 , X(n)

2

1: while A stopping criterion is not satisfied do
2: X

(n+1)
1 =

X
(n)
1 − γ1(8X1 − 4X2 − 4Y +B(A

(n)
1 ) +A

(n)
3 )

3: X
(n+1)
2 = X

(n)
2 − γ2(4X1 − 4Y +D∗(A

(n)
2 )−A

(n)
3 )

4: A
(n+1)
1 = proxλ1∥·∥∗

1
(A

(n)
1 +λ1(B(2X

(n+1)
1 −X

(n)
1 )))

5: A
(n+1)
2 = proxλ2∥·∥∗

1
(A

(n)
2 +λ2(D(2X(n+1)

2 −X
(n)
2 )))

6: A
(n+1)
3 = proxλ3∥·∥∗

1
(A

(n)
3 + λ3(2X

(n+1)
1 −X

(n)
1 −

(2X
(n+1)
2 −X

(n)
2 ))

7: n← n+ 1
8: end while

C. Convex Algorithm

We derive the iterative algorithm to solve (8) using a
monotone operator splitting (MOS) [9], [10]. We rewrite (8)
by introducing auxiliary variables Ak (k = 1, 2, 3) as follows:

min
X1,X2

2∥X1 −Y∥2F + 2∥X2 −Y∥2F + 2∥X1 −X2∥2F

+ λ1∥A1∥1 + λ2∥A2∥1 + λ3∥A3∥1
s.t. A1 = BX1, A2 = D(X2), A3 = X1 −X2.

(9)

It is a MOS applicable form and its iterative solver is shown
in Algorithm 1. The detailed derivation can be found in
Appendix. In the algorithm, we use the following operators:

• ∇: Differential operator.
• D∗: The adjoint operator of D and given by D∗(A2) =
(diag(A21) + diag(1⊤A2)− 2A2)X2.

• proxλ∥·∥1
: Soft-thresholding operator [19].

Under appropriate conditions on {γ1, γ2, λ1, λ2, λ3}, Algo-
rithm 1 converges to the solution to (8).

D. Deep Algorithm Unrolling

While Algorithm 1 can be converged to the global mini-
mum, we sometimes need many iterations for convergence.
Here, we unroll the algorithm and train the regularization
parameters in each iteration by using DAU.

The unrolled algorithm is visualized in Fig. 2. To solve
(9), five hyperparameters are needed: {γ1, γ2, λ1, λ2, λ3}.
We replace these hyperparameters with trainable ones as
{γ(l)

1 , γ
(l)
2 , λ

(l)
1 , λ

(l)
2 , λ

(l)
3 }

L−1
l=0 , where L is the number of it-

erations (layers) of the algorithm.
Each unrolled layer corresponds to a single iteration in

Algorithm 1 and parameters are trained with deep neural
network techniques [11]. In the proposed method, the total
number of trainable parameters is 5L.

IV. DENOISING EXPERIMENTS

In this section, we perform experiments on denoising of
color point clouds (CPCs) and compare our method with
existing methods.
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Fig. 2: Unrolled version of the proposed algorithm with DAU.

Setup: We use three CPCs, Andrew, Sarah, and David,
taken from [20]. The original CPCs are (index-based) uni-
formly sampled to N = 500. For attributes and coordi-
nates, we consider four pairs of noise levels: (σRGB, σ3-D) =
(0.1, 0.1), (σRGB, σ3-D) = (0.1, 0.2), (σRGB, σ3-D) = (0.2, 0.2)
and (σRGB, σ3-D) = (0.2, 0.3) where σRGB and σ3-D are
the standard deviations of noise for RGB values and 3-D
coordinates, respectively. In all methods, we construct a five-
nearest neighbor graph from noisy coordinates.

Our method is compared with three methods: k-NN graph-
based denoising method using geometry and color (abbreviated
as k-NN) [1], fast graph-based CPC denoising (abbreviated
as FastCPC) [21], and graph deep algorithm unrolling (ab-
breviated as GraphDAU) [7]. The proposed method has two
specifications: 1) iterative convex optimization with fixed
parameters, which is decided by grid-search (Section III-C)
and 2) DAU with trained parameters (Section III-D). These
two results are also reported.

The dataset contains 40 samples for every class, i.e.,
Andrew, Sarah, and David. We split these samples into
30 training data and 10 test ones. The training configurations
are summarized in Table I. For training of the proposed DAU
and GraphDAU [7], we use the mean squared error as a loss
function.

We evaluate restoration performance based on peak signal-
to-noise ratio (PSNR) of denoised color signals. We average
the results obtained from 30 independent runs.
Results: Fig. 3 visualizes errors between the original and
restoration results of Sarah. We observe that our method can
suppress the effect of noise compared to the other methods.

Table II summarizes PSNRs of denoised attributes. As

TABLE I: Training configuration.

Batch size 1
Epochs 7

Optimizer Adam
Learning rate 0.001

Scheduler StepLR

observed, the proposed method outperforms the other methods
in most cases. For (σRGB, σ3-D) = (0.1, 0.1), the k-NN method
presents the best PSNR. This is because it has hand-crafted
parameters (provided by the original paper) that best fit to
point clouds with small noises. As a result, at high noise levels,
its PSNRs are quite similar to the noisy inputs. In contrast, our
method exhibits stable PSNRs thanks to automatic parameter
tuning via algorithm unrolling, whose objective function incor-
porates noisy attributes as well as noisy coordinates. Note that,
in the testing phase, our DAU-based method has much smaller
number of iterations than the model-based counterpart: The
model-based approach of the proposed method typically runs
about 500 iterations to converge, while the DAU counterpart
only needs five iterations.

V. CONCLUSION

In this paper, we propose a denoising method for attributes
on graphs by considering the following two assumptions
simultaneously: 1) local smoothness assumption where two
signal values connected with a large edge weight are usually
similar, and 2) global smoothness assumption where attributes
are smooth in the appropriate space. Our method is formulated
as a convex optimization that can be solved by the MOS. We
then unroll the iterative algorithm to learn the regularization
parameters. In the denoising experiments of color point clouds,
our method shows superior results to existing ones.

APPENDIX
MONOTONE OPERATOR SPLITTING

MOS methods can be applied to solve problems of the
following form [9], [10]:

min
X∈RN

f1(X) + f2(X) + f3
(
R(X)

)
, (10)

where f1 is a differentiable convex function with β-Lipschitz
continuous gradient ∇f1, f2 and f3 are convex, lower-
semicontinuous, and proximable, and R is a (possibly non-
linear) monotone operator1. A function f is called proximable
if its proximal operator, i.e., proxγf (x) = argminy f(y) +
1
2γ ∥x− y∥22, can be computed efficiently for some γ > 0.

A typical MOS algorithm alternates a forward (gradient)
step on f1 with backward (proximal) steps on f2 and f∗

3 .
Concretely, one can write:

X(n+1) = prox
γf2

[X(n) − γ(∇f1(X(n)) +R∗(A(n)))] (11)

A(n+1) = prox
λf∗

3

[A(n) + λR
(
2X(n+1) −X(n))], (12)

1In many studies, R can be written as a matrix. In the case, MOS is known
as a primal dual splitting [22], [23].
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(a) Original (b) Noisy (10.25) (c) k-NN (10.23) (d) FastCPC (10.34) (e) GraphDAU
(11.67)

(f) Proposed
(Model) (10.84)

(g) Proposed (DAU)
(11.97)

Fig. 3: CPC denoising results of Sarah with (σRGB, σ3-D) = (0.2, 0.3). (a) original and (b) noisy signals, and (c)–(g)
visualizations of squared errors. PSNRs are also shown. Red points correspond to large errors and blue ones small.

TABLE II: Average PSNR of denoised CPCs.

Category Method (σRGB, σ3-D) = (0.1, 0.1) (σRGB, σ3-D) = (0.1, 0.2) (σRGB, σ3-D) = (0.2, 0.2) (σRGB, σ3-D) = (0.2, 0.3)

Model
FastCPC [21] 15.24 15.24 9.71 9.71
k-NN [1] 16.12 15.38 9.76 9.64

Proposed (Model) 15.15 13.21 10.81 10.43

DAU GraphDAU [7] 15.23 15.03 11.24 11.07
Proposed (DAU) 15.79 15.44 12.39 11.10

Noisy 15.15 15.15 9.61 9.61

where R∗ is the adjoint operator of R, X and A are the
updating variables, f∗

3 is the Fenchel conjugate of f32.
We assign the terms in (8) into the form of (10) as

f1(X) = 2∥X1 −Y∥2F + 2∥X2 −Y∥2F + 2∥X1 −X2∥2F ,
f2(X) = 0,

f3(R(X)) = λ1∥BX1∥1 + λ2∥D(X2)∥1 + λ3∥X1 −X2∥1.
As can be seen, all regularization terms are collected into
f3(R(X)). Although D is not linear, ∥D(X2)∥1 is still convex
according to X2. As a result, the subgradient of f3(R(X)) is
monotone and applicable to MOS.
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[23] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involving
cocoercive operators,” Adv Comput Math, vol. 38, no. 3, pp. 667–681,
2013.

2436


