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Abstract—Sparse Bayesian Learning (SBL) is a widely-used
framework for sparse signal reconstruction, yet its standard
formulation optimizes model evidence rather than directly min-
imizing reconstruction error. In this paper, we reinterpret stan-
dard SBL as an approximate scheme for minimizing the mean
squared error (MSE) in the input domain. Motivated by this
insight, we derive novel hyperparameter update rules aimed
at minimizing input-space MSE, and discuss the limitations
of using Stein’s unbiased risk estimate in underdetermined
systems. To address this issue, we propose an alternative risk
minimization framework based on output-space MSE, which
admits an unbiased estimator. We derive closed-form coordinate-
wise update rules for the regularization parameters and analyze
their sparsity-promoting behavior. In particular, we identify a
sufficient condition—termed the statistical orthogonality con-
dition (SOC)—under which certain components are optimally
pruned. This connects our framework to classical sparse recovery
criteria. While our analysis sheds light on the emergence of
sparsity via risk-based optimization, it also highlights open
questions regarding the conditions under which SOC is satisfied,
warranting further investigation.

I. INTRODUCTION

Sparse signal reconstruction (SSR) and compressed sensing
(CS) have attracted broad interest in recent years due to their
wide applicability across signal processing, communications,
and machine learning [1]–[5]. These problems are often mod-
eled as:

y = Ax0 + v, (1)

where y ∈ RM is the observation vector, A ∈ RM×N is
the known sensing matrix, x0 ∈ RN is the unknown sparse
signal with K ≪ N nonzero entries, and v is additive white
Gaussian noise. Among the various Bayesian approaches to
SSR, Sparse Bayesian Learning (SBL) [6]–[8] has emerged
as a powerful and flexible framework. In SBL, x0 is modeled
as a zero-mean Gaussian random vector with a diagonal co-
variance P, and both the hyperparameters P and signal x0 are
estimated in a hierarchical Bayesian setting. This estimation
is typically achieved via evidence maximization, also known
as Type II Maximum Likelihood (ML) or Empirical Bayes
(EB) [9], with further acceleration provided by methods like
Fast Marginalized Likelihood (FMML) [10].

Although effective in practice, the objective function in SBL
is not directly aligned with the mean squared error (MSE)—a
natural criterion in signal estimation tasks. In our previous

work [11]–[13], we proposed SURE-SBL, which leverages
Stein’s Unbiased Risk Estimator (SURE) [14] to guide hy-
perparameter optimization with the goal of minimizing the
MSE. This approach bridges the gap between Bayesian model
evidence and risk-based performance measures. However, due
to the presence of the unknown noise vector v, the analysis of
the MSE behavior under SURE-guided optimization remains
analytically challenging.

This paper presents a deeper investigation of SBL from an
MSE-centric perspective. We first show that standard SBL can
be interpreted as an approximate algorithm for minimizing
the input-space MSE, MSEx := E∥x̂ − x0∥2. Motivated by
this insight, we derive alternative update rules aimed at more
explicitly minimizing MSEx. However, due to the underdeter-
mined nature of most SSR problems, Stein-based estimates
of MSEx (denoted SUREx) are biased and unreliable. To
circumvent this limitation, we instead consider the output-
space MSE, defined as MSEz := E∥Ax̂ − Ax0∥2, which
admits an unbiased estimator SUREz that can be evaluated
from the observed data.

By minimizing SUREz, we derive a coordinate-wise update
rule for the hyperparameters, which we show can lead to
sparsity-promoting behavior in the recovered signal. In par-
ticular, we characterize the conditions under which certain
hyperparameters diverge to infinity—effectively pruning their
corresponding coefficients from the model. These sparsity pat-
terns emerge naturally without explicitly enforcing ℓ1 penalties
or hard sparsity constraints. Moreover, we provide an analysis
of when and why these sparse solutions arise, based on a
tradeoff between data fidelity and model complexity. This
includes connections to conditions such as statistical orthogo-
nality between columns of A. While our analysis explains part
of the sparsity-inducing mechanism, a complete theoretical
understanding of this behavior remains an open direction for
future work.

II. MSE-BASED HYPERPARAMETER OPTIMIZATION

A. Posterior Estimator and Preliminaries

For estimating x0, SBL assumes that each element xi of
x follows an Automatic Relevance Prior (ARP). For normal
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SBL, ARP is modeled by a Gaussian distribution with zero
mean and variance pi, represented as:

p(xi; pi) = N (xi; 0, pi), i = 1, · · · , N ; (2)

where pi is an unknown Gaussian variance optimized through
the SBL algorithm.

Under the assumed Gaussian prior, the posterior mean
estimator becomes:

x̂ =
(
A⊤A+Λ

)−1
A⊤y, Λ = diag(λ1, . . . , λn), (3)

which corresponds to a coordinate-wise weighted ridge estima-
tor, where each component of x is regularized with its own ℓ2
penalty λi = σ2

v/pi. Let H = A⊤A+Λ. Since σ2
v is known,

optimizing λi and optimizing pi are actually equivalent.
To isolate the effect of λi, we define

Hī = A⊤A+
∑
j ̸=i

λjeje
⊤
j , (4)

so that H = Hī + λieie
⊤
i .

Applying the Sherman–Morrison formula yields

H−1 = H−1
ī

− λi

1 + λiαi
H−1

ī
eie

⊤
i H

−1
ī

, (5)

where αi = e⊤i H
−1
ī

ei. By replace y by Ax0+v, the estimator
x̂then decomposes as

x̂ = H−1A⊤Ax0 +H−1A⊤v. (6)

B. Input-Space MSEx

The mean squared error (MSE) with respect to x0 is given
by

MSEx := E
[
∥x̂− x0∥2

]
= Bias2 +Var, (7)

where

Bias2 = ∥(H−1A⊤A− I)x0∥2, (8)

Var = σ2 Tr(H−1A⊤AH−1). (9)

Substituting the Sherman–Morrison identity into the bias
term yields

Bias2 = ∥(H−1
ī

A⊤A− I)x0∥2

− 2λi

1 + λiαi
x⊤
0 (H

−1
ī

A⊤A− I)⊤H−1
ī

eie
⊤
i H

−1
ī

A⊤Ax0

+

(
λi

1 + λiαi

)2 (
e⊤i H

−1
ī

A⊤Ax0

)2 · e⊤i H−2
ī

ei. (10)

Similarly, the variance term becomes

Var = σ2 Tr(H−1
ī

A⊤AH−1
ī

)

− 2λiσ
2

1 + λiαi
e⊤i H

−1
ī

A⊤AH−2
ī

ei

+ σ2

(
λi

1 + λiαi

)2

∥AH−1
ī

ei∥2 · e⊤i H−2
ī

ei. (11)

Combining the two parts, we obtain

MSEx(λi) = const − 2λi

1 + λiαi
T

(x)
1 +

(
λi

1 + λiαi

)2

T
(x)
2 ,

(12)

where

T
(x)
1 := x⊤

0 (H
−1
ī

A⊤A− I)⊤H−1
ī

eie
⊤
i H

−1
ī

A⊤Ax0

+ σ2 · e⊤i H−1
ī

A⊤AH−2
ī

ei, (13)

T
(x)
2 :=

(
e⊤i H

−1
ī

A⊤Ax0

)2 · e⊤i H−2
ī

ei

+ σ2∥AH−1
ī

ei∥2 · e⊤i H−2
ī

ei. (14)

C. Output-Space MSEz

We now consider the MSE measured in the output space:

MSEz := E
[
∥Ax̂−Ax0∥2

]
= Bias2 +Var, (15)

where

Bias2 = ∥A(H−1A⊤A− I)x0∥2, (16)

Var = σ2 Tr(AH−1A⊤AH−1A⊤). (17)

The squared bias term expands as:

Bias2 =
∥∥A(H−1

ī
A⊤A− I)x0

∥∥2
− 2λi

1 + λiαi
· x⊤

0 (H
−1
ī

A⊤A− I)⊤A⊤AH−1
ī

ei

· e⊤i H−1
ī

A⊤Ax0

+

(
λi

1 + λiαi

)2 (
e⊤i H

−1
ī

A⊤Ax0

)2 · ∥AH−1
ī

ei∥2. (18)

The variance term becomes:

Var = σ2 Tr(AH−1
ī

A⊤AH−1
ī

A⊤)

− 2λiσ
2

1 + λiαi
e⊤i H

−1
ī

A⊤AH−1
ī

A⊤AH−1
ī

ei

+ σ2

(
λi

1 + λiαi

)2

∥AH−1
ī

ei∥4. (19)

Combining bias and variance, we obtain:

MSEz(λi) = const − 2λi

1 + λiαi
T

(z)
1 +

(
λi

1 + λiαi

)2

T
(z)
2 ,

(20)
where:

T
(z)
1 := x⊤

0 A
⊤(AH−1

ī
A⊤ − I)AH−1

ī
eie

⊤
i H

−1
ī

A⊤Ax0

+ σ2 · e⊤i H−1
ī

A⊤AH−1
ī

A⊤AH−1
ī

ei, (21)

T
(z)
2 :=

(
e⊤i H

−1
ī

A⊤Ax0

)2 · ∥AH−1
ī

ei∥2

+ σ2 · ∥AH−1
ī

ei∥4. (22)

D. Hyperparameter Optimization

While the closed-form expression for the optimal λ∗
i derived

earlier is exact, it is algebraically nontrivial due to the rational
dependence on λi. To gain further insight, we consider an
alternative derivation based on a change of variables that
transforms the original objective into a simple quadratic form.

Recall that the MSE objective for either input-space in (12)
or output-space (20) can be expressed generically as:

MSE(λi) = const − 2λi

1 + λiαi
T1 +

(
λi

1 + λiαi

)2

T2, (23)
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where T1, T2 are problem-dependent constants and αi :=
e⊤i H

−1
ī

ei > 0.
Define a transformed variable:

θ :=
λi

1 + λiαi
, (24)

which is strictly increasing in λi over the interval λi ∈ [0,∞).
This change is invertible:

λi =
θ

1− αiθ
, valid for θ ∈ [0, 1/αi). (25)

Substituting into the objective, we obtain:

MSE(θ) = −2T1θ + T2θ
2 + const, (26)

a convex quadratic function over the feasible interval [0, 1/αi).
The unconstrained minimizer is:

θ∗ =
T1

T2
. (27)

We now consider three cases based on the sign and magni-
tude of T1 and T2:

Case 1: T1 ≤ 0: In this case, θ∗ ≤ 0 lies outside
the feasible domain. Since MSE(θ) is strictly increasing on
[0, 1/αi), the minimum is attained at θ = 0, which corresponds
to λ∗

i = 0.

Case 2: T1 > 0, T2 > αiT1: Then θ∗ = T1/T2 ∈
(0, 1/αi) lies within the feasible region, and the optimal
regularization parameter is given by:

λ∗
i =

θ∗

1− αiθ∗
=

T1

T2 − αiT1
. (28)

Case 3: T1 > 0, T2 ≤ αiT1: In this case, θ∗ ≥ 1/αi is
infeasible. The function MSE(θ) is decreasing throughout the
feasible domain, and the minimum is asymptotically attained
as θ → 1/α−

i , which corresponds to λi → ∞.
Therefore, the closed-form optimal λ∗

i , valid in both input-
and output-space MSE formulations, is given by:

λ∗
i =


0, if T1 ≤ 0,

T1

T2 − αiT1
, if T1 > 0, T2 > αiT1,

∞, if T1 > 0, T2 ≤ αiT1.

(29)

This equivalent derivation not only simplifies the optimiza-
tion process but also provides a clearer understanding of how
regularization strength λi is governed by the balance between
signal and noise contributions, encoded via T1, T2, and αi.

III. SURE-BASED HYPERPARAMETER OPTIMIZATION IN
THE INPUT DOMAIN

Since the system is underdetermined, it is not feasible to
use SUREx directly as an unbiased proxy for the input-space
MSE (MSEx), due to the presence of components in x that
are not recoverable from the observations y. To address this
issue, we investigate several alternative strategies: (i) using
a component-wise SURE formulation by treating the rest of
x as Gaussian noise; and (ii) approximating the analytical
expressions T

(x)
1 and T

(x)
2 from observable quantities.

A. Component-Wise Estimation via SURExi

We first derive a Stein Unbiased Risk Estimate (SURE)
for estimating each individual component xi under a scalar
Gaussian observation model. Starting from the model:

y = Aixi +
∑
j ̸=i

Ajxj + v, (30)

we assume that the non-target components xj (j ̸= i) are
modeled as random variables with mean estimates x̂j and zero-
mean fluctuations x̃j :

xj = x̂j + x̃j , x̃j ∼ N (0, σ2
x̃j
). (31)

Substituting into (30) gives:

y −
∑
j ̸=i

Aj x̂j = Aixi +
∑
j ̸=i

Aj x̃j + v. (32)

This results in an effective scalar model:

ri = xi + wi, (33)

where wi is an effective Gaussian noise with variance:

σ2
wi

= (A⊤
i C

−1
i Ai)

−1, (34)

ri = σ2
wi
A⊤

i C
−1
i y, (35)

and
Ci =

∑
j ̸=i

pjAjA
⊤
j + σ2

vI. (36)

Under this model, the component-wise SURE for xi is:

SURExi
(pi) =

(
σ2
wi
ri

σ2
wi

+ pi

)2

+ 2
σ2
wi
pi

σ2
wi

+ pi
. (37)

Differentiating with respect to pi yields:

d

dpi
SURExi(pi) =

2σ4
wi
(pi + σ2

wi
− r2i )

(pi + σ2
wi
)3

, (38)

which leads to the following update rule:

p̂i = max(r2i − σ2
wi
, 0). (39)

This form corresponds to the Type-II Maximum Likelihood
(ML) update used in classical Sparse Bayesian Learning
(SBL), and shows that SBL implicitly assumes the other
coefficients are Gaussian-distributed, thereby avoiding the
underdetermination issue.

B. Coupled Optimization via Sum of Component-Wise SUREs
The above update only optimizes SURExi

with respect to
pi. However, since Cj (and thus SURExj

) also depends on pi
for j ̸= i, a better approach is to jointly optimize:

p∗i = argmin
pi

SURExi
(pi) +

∑
j ̸=i

SURExj
(pi). (40)

Letting γj = A⊤
j C

−1
i Aj , zj = A⊤

j C
−1
i y, we define:

SURExj
(pi) =

([
pi + σ2

wi
(1− pjγj)

]
zj

γj(pi + σ2
wi
)

)2

+
2pj(pi + σ2

wi
(1− pjγj))

pi + σ2
wi

. (41)
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Differentiating gives:

d

dpi
SURExj (pi) =

1

(pi + σ2
wi
)3

· (piC1,ij + C2,ij) , (42)

with:

C1,ij = 2σ2
wi

(
pj ·

z2j
γj

+ p2jγj

)
, (43)

C2,ij = 2σ4
wi

(
pj ·

z2j
γj

(1− pjγj) + p2jγj

)
. (44)

Combining with SURExi
yields the full gradient condition:

pi(2σ
4
wi

+
∑
j ̸=i

C1,ij) = 2σ4
wi
(r2i − σ2

wi
) +

∑
j ̸=i

C2,ij , (45)

leading to:

p̂i = max

(
σ2
wi
(r2i − σ2

wi
)−

∑
j ̸=i C2,ij

σ2
wi

+
∑

j ̸=i C1,ij
, 0

)
. (46)

C. Approximate Evaluation of T (x)
1 and T

(x)
2

The input-space MSE in (12) depends on the quantities T (x)
1

and T
(x)
2 . We now show that they can be expressed using

expectations over y and approximate posterior statistics:

T
(x)
1 = Ev

[
e⊤i H

−1
ī

A⊤y · e⊤i H−2
ī

A⊤y
]

− e⊤i H
−1
ī

A⊤Axx⊤H−1
ī

ei, (47)

T
(x)
2 = Ev

[(
e⊤i H

−1
ī

A⊤y
)2 · e⊤i H−2

ī
ei

]
. (48)

We propose two plug-in approximations for the covariance
term xx⊤:

1) Using posterior mean:

xx⊤ ≈ x̂(t)(x̂(t))⊤, (49)

where x̂(t) = H−1A⊤y.
2) Using posterior second moment:

xx⊤ ≈ x̂(t)(x̂(t))⊤ + σ2H−1. (50)

These substitutions allow us to form data-driven approxima-
tions to T

(x)
1 and T

(x)
2 and thus approximate MSEx without

needing the true x0.

D. Discussion and Open Questions

The derivations above provide multiple approaches for es-
timating the hyperparameters pi via SUREx-based strategies.
However, it remains unclear which method consistently yields
the best empirical or theoretical performance.

The simple component-wise update in (39) is attractive due
to its efficiency and intuitive Bayesian justification—it mirrors
the update in classical SBL, which assumes Gaussianity of
the remaining components. Nevertheless, this assumption does
not hold in truly sparse settings, and may lead to suboptimal
estimates when significant structure exists in x0.

The coupled optimization approach, which considers the
influence of pi on all SURExj for j ̸= i, offers a more
principled alternative but increases computational complexity

and remains sensitive to the choice of prior estimates. Further-
more, both formulations still rely on Gaussian assumptions to
sidestep the underdetermined nature of the problem, which
may limit their applicability in practice.

The third route—approximating T
(x)
1 and T

(x)
2 —offers a

direct connection to the true MSE objective. While appealing
in theory, its accuracy depends critically on the quality of
the posterior statistics used for substitution. Whether the
posterior mean alone suffices, or if second-order corrections
are essential, remains an open question.

We believe a systematic comparison of these estimators,
both theoretically (e.g., via bias-variance trade-offs) and em-
pirically (e.g., in signal recovery benchmarks), is warranted.
Moreover, extending these ideas beyond Gaussian assumptions
or incorporating structure (e.g., block sparsity or correlated
priors) could further enhance their practical utility.

IV. RISK ESTIMATION VIA SUREz

A. Stein Risk Estimator in Output Space

We now derive an unbiased risk estimate for the output
ẑ = Ax̂, based on the SURE framework. Define the estimator

x̂ = H−1A⊤y, ẑ = Ax̂, H = A⊤A+Λ. (51)

Then the Stein unbiased risk estimate of E[∥ẑ− z∥2] is given
by

SUREz = ∥ẑ− y∥2 −Mσ2 + 2σ2 · Tr
(
∂ẑ

∂y

)
= ∥AH−1A⊤y − y∥2 −Mσ2 + 2σ2 · Tr(AH−1A⊤).

(52)

Define a transformed variable βi :=
λi

1+λiαi
, which yields

a quadratic SURE form:

SUREz(βi) = const − 2C
(z)
1 βi + C

(z)
2 β2

i , (53)

where

C
(z)
1 := y⊤(AH−1

ī
A⊤ − I)⊤AH−1

ī
ei · e⊤i H−1

ī
A⊤y

+ σ2∥AH−1
ī

ei∥2, (54)

C
(z)
2 := ∥AH−1

ī
ei∥2 · (e⊤i H−1

ī
A⊤y)2. (55)

This gives rise to the same thresholding rule as in the MSE
case:

λ∗
i =


0, if C(z)

1 ≤ 0,
C

(z)
1

C
(z)
2 −αiC

(z)
1

, if C(z)
2 > αiC

(z)
1 ,

∞, otherwise.

(56)

B. Interpretation of Key Quantities

This coordinate-wise decision rule is controlled by three
interpretable scalars:

(i) αi (Stability/Variance Term): Represents the posterior
variance of xi if all other λj are fixed. A large αi suggests
that the i-th coordinate is weakly identifiable from the data.

(ii) C(z)
2 (Distortion/Cost Term): Quantifies the increase

in output energy caused by retaining x̂i, combining squared
bias and variance of x̂i in the projected space.
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(iii) C(z)
1 (Error Reduction Term): Represents the amount

by which prediction error can be reduced by allowing x̂i to
participate in ẑ. If C

(z)
1 is small or negative, including xi

contributes little and should be pruned.
These terms together form an implicit sparsity mechanism:

coordinates with small C
(z)
1 or large C

(z)
2 tend to be sup-

pressed by large λ∗
i .

C. Connection to Sparse Recovery via Statistical Orthogonal-
ity

Suppose xi = 0, i.e., the true signal does not contain this
component. Denote the residual prediction error excluding x̂i

as:
rī =

∑
j ̸=i

Aj(x̂j − xj). (57)

Then, minimizing MSEz w.r.t. x̂i leads to:

x̂∗
i = −E[⟨Ai, rī⟩]

∥Ai∥2
. (58)

Thus, the sufficient condition for x̂∗
i = 0 is:

E[⟨Ai, rī⟩] = 0. (59)

We refer to this as the statistical orthogonality condition
(SOC), as it ensures that the residual signal is, on average,
uncorrelated with the component direction Ai. When SOC
holds, it is optimal to set λ∗

i → ∞, effectively pruning the
i-th coordinate and enforcing x̂i = 0.

This insight provides a theoretical foundation for sparsity
promotion in risk-based estimators: pruning occurs not merely
because x̂i is small, but because the component Ai fails
to align—statistically—with the residual signal generated by
other coordinates.

It is important to emphasize, however, that while λi → ∞
implies x̂i = 0 and hence removes any contribution of Ai

to the output prediction, this alone does not guarantee SOC.
Indeed, once x̂i = 0, the residual rī becomes independent
of x̂i, and may still have nonzero statistical correlation with
Ai. Therefore, SOC is not a consequence of setting λi → ∞;
rather, it must precede and justify this pruning decision.

This subtlety reveals an interesting open question: under
what structural or statistical conditions on the sensing matrix
A and signal x0 does SOC naturally emerge? In the context
of sparse recovery, this relates closely to classical incoherence
and null-space conditions that guarantee uniqueness of sparse
solutions. A deeper investigation into how SOC connects to
these conditions—especially in high-dimensional or random
design regimes—could lead to novel theoretical insights and
principled regularization schemes. We leave this as a direction
for future work.

V. CONCLUSION

We have presented an MSE-centric reinterpretation of
Sparse Bayesian Learning (SBL), demonstrating that stan-
dard SBL implicitly approximates the minimization of input-
domain MSE. Building on this insight, we explored several
variants of SBL, including direct minimization of MSEx

and the use of SUREx as a proxy risk. Due to the limita-
tions of SUREx in underdetermined systems, we proposed a
tractable alternative based on SUREz. Our analysis shows that
coordinate-wise minimization of SUREz leads to a closed-
form update for each hyperparameter, capable of promoting
sparsity without explicit ℓ1 regularization. We introduced
the statistical orthogonality condition (SOC) as a sufficient
criterion for pruning coefficients, thereby connecting risk-
based learning with structural conditions commonly used in
sparse recovery theory. Despite these insights, several the-
oretical questions remain unresolved—particularly regarding
the typical scenarios in which SOC holds, and how this
relates to design properties of the sensing matrix and signal
model. Further research is needed to establish a comprehensive
understanding of sparsity mechanisms under SURE-guided
optimization.
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