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Abstract—Particle filtering (PF) is a widely used technique
for approximating distributions in statistical signal processing,
particularly in non-linear and non-Gaussian state-space models.
However, its efficiency depends on the number of particles,
which is significantly affected by the dimensionality of the latent
state. As a result, PF has traditionally been less effective in
high-dimensional settings. Local particle filters (LPFs) address
this limitation by performing PF steps within smaller regions
of the space, improving estimation accuracy even with fewer
particles. However, their performance relies on designing an
appropriate partitioning of the space. In this work, we propose a
method to automatically identify structure within the state space
based on Granger causality, enabling the creation of effective
partitions. Our method can be applied to a large class of LPFs.
We also discuss possible extensions and demonstrate the good
performance of our approach in numerical experiments.

Index Terms—Particle filtering, state-space models, local par-
ticle filters, state partitioning, Granger causality.

I. INTRODUCTION

Particle filtering (PF) is a powerful sequential Monte Carlo
method used for estimating hidden states in dynamic systems
when traditional analytical solutions are infeasible. It addresses
problems where uncertainty evolves over time, such as fi-
nancial modelling and robotics, by approximating probability
distributions with a set of weighted samples. Alternatives
include the Kalman filter (KF) and its variants, but PF excels
in handling non-linear and non-Gaussian scenarios [1], which
makes it especially relevant to climate applications [2], [3].

Particle filtering faces significant challenges in high-
dimensional settings, primarily due to the large number of
particles required for accurate state estimation. Several strate-
gies have been proposed to mitigate this issue, for example,
using special proposals and modifying the resampling steps
(4], [5].

Here we focus on the local particle filter (LPF) approach,
which contains a large class of methods [6]. Following the
divide-and-conquer strategy, in LPFs, several filters are ap-
plied, each to a smaller subset of the dimensions of the original
state space; some examples can be found in [7]-[9].

LPFs are inspired by the idea that some regions evolve
approximately independently over short periods, and that not

The work of A. Q. is supported by the Consejo Nacional de Humanidades,

Ciencias y Tecnologias (CONAHCYT). The work of V. E. is supported by
ARL/ARO under W911NF-22-1-0235 and by ARIA under PROTECT project.

ISBN: 978-9-46-459362-4

2442

Victor Elvira
School of Mathematics
University of Edinburgh

Edinburgh, UK
victor.elvira@ed.ac.uk

all observations have information about all state dimensions.
These methods have been shown to be effective in reducing
weight degeneracy. However, existing approaches predomi-
nantly assume a spatial structure where state and observation
components correspond to fixed geographic locations [6], and
hence an idea of an adequate local area is known. The
experimental results of relevant previous work, as in [10]
and [11], indicate that the performance of these methods
is highly sensitive to the chosen notion of locality. In this
paper, we propose a novel method that leverages Granger
causality to identify neighbourhood relationships, enabling
automatic partitioning without the need for predefined spa-
tial structures. Our approach learns partitions tailored to the
underlying system dynamics, extending the applicability of
LPFs beyond systems with known neighbourhood structure.
We frame the proposed method in a more general conditional
independence scheme that offers a promising way to formalize
the connection between the the causes of weight degeneracy
with the LPF framework.

The rest of the paper is structured as follows. Section
IT outlines the problem and reviews relevant LPF literature.
Section III describes our method, tested in Section IV with
numerical examples. Conclusions are drawn in Section V.

II. PROBLEM STATEMENT AND BACKGROUND
A. Problem statement

Consider a state-space model (SSM) defined as follows:

xo ~ p(To), (D
Tt | Tt—1 ™ p(xt | $t71)> 2
Yt | Ty~ P(yt \ ft), 3)

where z; € R% is the state vector at time ¢, Yy € Ry
is the observation vector at time ¢. All model parameters
that are considered to be known in this paper. The Bayesian
filtering problem aims at computing the posterior distribution
p(2¢ | y1.¢), which in general SSMs can only be approximated
through particle filters [1], [12] as

NP
Pl | yi) = D wis o (), (4)
1=1
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where N, is the number of particles; :chi) is the i-th particle,

and wt(i) is its associated importance weight, both at time .

B. Local particle filters (LPFs)

Localized Particle Filters (LPFs) leverage standard PF steps
(propagation, weighting, resampling) but restrict computations
to relevant state-space regions [6], [13], [14]. Locality is
formalized by partitioning the state vector x; into K dis-
joint blocks {Bj}X |, where each B, C {1,...,d,} and
U§:1 B, ={1,...,d,}. Block-specific notation is used (e.g.,
wEZ,)C denotes the weight for block k of particle ¢ at time t).

C. An LPF example with adaptive partitioning

We now describe a concrete example of LPF, in Algorithm
1, called the block PF [9]. We first sample from a prior
distribution (line 1). Then, at each time step, we sample from
the proposal distribution (line 3). Next, we create a partition
of the state space (line 4). For each block in the new partition,
we calculate the local weights wy,)f and normalize them within

each block (line 6). We then resample new particles 5% (line

Algorithm 1 A LPF with adaptive partitioning
~(i)

1: Initialize Ty’ ~ p(xo) for i =1,..., N,.

2: fort =1, 2 . do ‘

3: Sample particles xgl) ~ p(x | EEEl_)l), i=1,...,N,.

4: Obtain the state-space partition {B;}X | with a
partitioning algorithm.

5 for k=1,...,K do

6: Compute block welghts and normalize them

7 wih o plyen | ).

8 Resample N, particles EEZ,)C , using the weights

9: wizl)g of the block.

10: end for

11: Reassemble resampled particles and approximate the
filtering distribution as in Eq. (4).

12: end for

7). Finally, we concatenate these particles to obtain global
particles for the prediction step at £ 4+ 1 (line 9). The step of
creating a partition (line 4) is not proposed in the original block
PF. But we added the adaptive partitioning, as in [10], where
partitions that are adapted to the intrinsic system dynamics
broaden the utility of a large spectrum of LPFs beyond systems
with a predefined neighbourhood notion.

D. LPF approaches

a) Propagation: in LPFs involves sampling particles
either locally (by block) or globally. The local approach, as in
[15], samples each block independently from p( (k) | l‘ )
requiring the transition to factorize across blocks as

p(xt \ Tt—1

K
) = Hp(a?t,k | Te—1k) - &)

For systems where this factorization is unknown, a global
approach, as illustrated in the Algorithm 1, can be used;

it propagates full-state particles but requires reassembling
local particles. This reassembling can lead to particles that
are unlikely or even impossible under the model. For that
reason, LPFs may include smoothing mechanisms to address
these discontmultles [16]. Another option is to estimate the
transitions p(a:t | J’(k) 1), as shown in [7].

b) Weighting: LPFs aim to mitigate weight collapse, a
common phenomenon in PFs where a single particle accu-
mulates nearly all the weight, by computing local weights.
The local approach, as shown in the Algorithm 1, assumes
factorized likelihoods,

=

H ytk|1'tk (6)

p(ye | 1)
Then weights depend only on information of the block
where, if the bootstrap proposal is used, they take the form
wt(k) x p(y; (k) | :z: ) Again, for non-factorizable models,
approximations of local weights can be made, as proposed in
[17]-[19], though performance degrades if the estimations are
not adequate.
¢) Resampling: in LPFs can be performed locally, as in
Algorithm 1, where each block is resampled independently
using its own weights. However, there are approaches that aim
to resample global particles to enable estimations or global
propagation. These methods aim to preserve the plausibility
of the global particles while retaining the benefits of local
weighting [4], [6], [20].

E. Fartitions of the state space for LPF

Many LPFs require a state-space partition in addition to the
usual inputs of a standard particle filter. It is often assumed a
spatial structure in the SSM, where each state and observation
component is linked to a spatial location, and a distance
function exists between these locations [6]. Our proposed
method, explained in Section III, explores alternative ways
to define proximity when components are not tied to physical
locations. In [11], a method for partitioning SSMs is presented;
it is based on the structure of the transition distribution. Those
partitioning methods are useful for SSMs where the compo-
nent relationships are clearly defined and constant over time.
Other approaches with adaptive partitioning are presented in
[21], which employ multiple partitions with parallel local
particle filter instances, and in [10], which constructs partitions
based on covariance between dimensions.

III. PROPOSED METHOD

We propose the Granger constrained spectral clustering (G-
CSC) framework for Bayesian filtering in high-dimensional
spaces. Our approach automatically finds a suitable partition
of the dimensions in the state space based on Granger causality
(GC). GC typically measures whether one time series improves
the prediction of another one; it has been widely applied in
signal processing and statistics [22], [23]. GC generally deals
with observed time series; however, our G-CSC framework
allows us instead to deal with both the observation and latent
processes.
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A. Granger causality for LPFs

Consider the trajectories of the true state, {z;}:, and ob-
servations, {y:}:. Given an index 0 < ¢ < d,, we denote
by z(q) = {14} the time series formed only by the ¢-th
dimension of the true state trajectory. Let 0 < ¢q,r < d,,
according to the definition of strong Granger causality [24],
we say that the time series () is Granger non-causal for the
time series z(q) if

Vt : p(wt,q | xl:tfl,qa xl:tfl,r) = p(xt,q ‘ l'l:tfl.,q)a (7)

or equivalently, x4 4 L Z1.4—1, | T1:4—1,q- Getting back to our
purpose of partitioning the state, if up to a time ¢, the past
values of z(r) do not affect the present x4, given the past
of z(q), then it is reasonable for the r-th and ¢-th dimensions
of the particles at time ¢, to be in different blocks for the
weighting step computations of Algorithm (1).

Note that in (7), we only used information from the state
space. However, it can be beneficial to use the observation
to design the partition. For instance, it has been shown that
the variability 72 = var {lnp(yt | x,(f))], in some settings,
relates to the weight degeneracy and that 72 can be related
to the dimension of the state space [25]. Consider then, the
following conditional independence:

ye L xy ‘ Lt.q- ®)

The interpretation is that if, given z; 4, ¥; is independent of
Zy,r, then the computation of the weight of the i-th particle
) () being in different blocks.

tr and Ty g

can be done with x

B. Approximating GC for LPFs

For practical implementation, we need to address that in
the particle filter scenario we do not have access to the
true states, and that the previous conditional independences
can challenging to verify. Instead of using the true states
to estimate GC up to a time ¢, we will use the particles
{@i—m }M_,, where M > 0 is known as the predictor order.
And as approximations of a measure of (7) and (8), we will use
pairwise Granger causality (pairwise GC); this instead of the
probability examines predictability by fitting an autoregressive
model. In the following we describe how to do it for (7), the
process to approximate (8) is analogous. With pairwise GC we
compare the predictability of the present g-th dimension with:
(a) a model that uses only information from the past of the
g-th dimension, to the power of prediction of (b) a model that
also uses the r-th past. To implement (a), we use the following
linear estimation of x; 4, known as the self-predictor model,

M
Lt,q = Z Qqq[M] Tt g + €4[t];
m=1

to implement (b), we use the cross-predictor (see Figure III-B)

M M
Lt,r—q = Z Baalmt—m,q + Z Brqlmli—m.r + €rsq[t].
m=1

m=1

Fig. 1. Representation of the information used to predict x¢,4 in Granger
causality: the self-predictor (using the past of signal x4) and the cross-
predictor (using also the past of x,., shown in blue).

Self-predictor

Cross-predictor

Where ayq[m], and B,4[m], Brq[m] are coefficients that are
estimated using linear regressions; ¢,4[t] and €,_,4[t] are the
residual errors of the self-prediction and cross-prediction mod-
els, respectively. The particles are used to do the regression.
Particles of the present, xgz,)c, are the regression value and the
corresponding past values, {:ciz_)mk m—1, are the regressors.
The pairwise Granger causality strength is then given by

Var(eq[t])

Gr—>q[t] =In m7

©))
A causality strength matrix G[t] is constructed, where each
entry G[t, 4 = G[t],_4 represents the causality strength from
the dimension r to the dimension ¢ at time ¢; higher values
provide stronger evidence that » Granger-causes q.

C. Fartitioning the space with GC

We now describe a way to create a partition of the state
space, {Bk}le, based on GC, at each time ¢, as required in
line 4 of Algorithm 1. To do this, we apply to the causality
strength matrix G[t] derived in (9) a constrained spectral
clustering (CSC), as proposed in [10]. Spectral clustering
connects to graphical approaches in SSMs [26], [27] as a
graph-clustering method based on low-dimensional representa-
tions. The procedure is described in Algorithm 2 and requires
particles {xg’jm}%zo, the number of blocks K, the maximum
block size ¢, and the number of eigenvalues to be retained /.
First, a pairwise Granger causality measure is computed for

Algorithm 2 G-CSC for partitioning the space
1: ApFroximate the Granger causality matrix G using
{xtz_)m}f\n/fzo, as described in (9).
2: Compute the graph Laplacian L of G and store the
eigenvectors associated with the ¢ smallest eigenvalues in
a matrix V € R"*¢,
3: Apply K-means clustering to the rows of V/, subject to the

block size constraint ¢, to obtain the partition {B; ; }X_;.

the state dimensions, as described previously, in Section III-A,
and used to construct a similarity matrix (line 2). To ensure
the matrix’s symmetry and non-negativity, required for SC, the
following steps are applied: the minimum value is subtracted
from all entries; the diagonal is set to the maximum value,
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TABLE I
MSE PERFORMANCE OF DIFFERENT PARTICLE FILTERS IN THE LORENZ 96
MODEL WITH d, = 60.

N, 320
method

640 1280 2560

oracle 0.2369 (0.0052) 0.2252 (0.0035) 0.2203 (0.0019) 0.2175 (0.0017)

cov-CSC 0.2455 (0.0066) 0.2353 (0.0046) 0.2295 (0.0036) 0.2238 (0.0031)
Gx-CSC 0.2573 (0.0094) 0.2427 (0.0039) 0.2353 (0.0038) 0.2317 (0.0036)
Gy-CSC 0.2584 (0.0068) 0.246 (0.0061)  0.2383 (0.0046) 0.2359 (0.0023)
random 0.2689 (0.0094) 0.26 (0.0061) 0.2557 (0.0036) 0.2513 (0.0032)

bootstrap PF 11.3548 (1.8664) 10.0843 (1.8861) 9.2342 (1.5181) 7.9534 (1.6953)

TABLE 11
ESS PERFORMANCE OF DIFFERENT PARTICLE FILTERS IN THE LORENZ 96
MODEL WITH dg = 60.

320 640 1280 2560

P
method

Gx-CSC
Gy-CSC
cov-CSC
oracle
random

161.5159 (0.8282) 319.0632 (1.5842)
157.3882 (1.0214) 309.7498 (2.0326)
156.7076 (0.9631) 306.1528 (1.3543)
139.645 (0.5169)  274.4733 (1.0842)
135.5494 (1.0653) 267.5566 (1.6485)

632.4754 (3.8463)
611.8503 (3.7483)
604.0699 (3.402)

543.0379 (1.5278)
530.5982 (2.1929)

1260.6273 (6.5207)
1213.0253 (7.6419)
1189.0015 (7.8475)
1078.6464 (1.7734)
1058.5751 (5.5388)

bootstrap

E T 3.333 (0.3513)

4.4217 (0.4696)  5.5188 (0.8258)  7.2378 (0.9395)

and the matrix is symmetrized by adding it to its transpose.
CSC is then applied to the resulting matrix following [10]:
it calculates the Laplacian L of the matrix G[t], along with
its ¢ smallest eigenvalues (line 3); and finally, to determine
the blocks and to prevent excessively large ones, it uses the
constrained k-means algorithm [28] (line 4).

D. Discussion and future work

We have used the LPF [9] to provide a concrete method
in the Algorithm 1. However, the partitions generated by our
method could be used in any LPF that requires partitions as an
input; some examples are shown in [6]. The partitions in the
Algorithm 1 are updated at each time step, though they could
be updated less frequently. One of our approaches uses only
information from the states (7), so we expect our partitioning
scheme to yield superior performance in methods that perform
the prediction step by blocks. A promising avenue for future
work is estimating non-linear Granger causality, which is ideal
for typical PF applications.

IV. NUMERICAL EXPERIMENTS

We evaluate the proposed method G-CSC, with predictor
order M = 1. To test, we use a stochastic version of the Lorenz
96 model, commonly employed in the PF literature to explore
high-dimensional scenarios [29] and climate forecasting [30].
This model can exhibit chaotic behaviour, and its deterministic
version is given by the following set of differential equations:

dz,

dt
where the indices are to be understood with periodic boundary
conditions: x_; = %4,-1,%0 = %4,, and x1 = 4,41, and
where d, = 60 and F' = 8, which produce chaotic dynamics
[31]. A fourth-order Runge-Kutta method with a time step of

= (Tg41 — Tg—2)Tg—1 — g+ F, g=1...d,,

0.05 is used for integration. The state-space model that we use
for simulations is then given by

q (10)
Yt+1 = Tey1 + Vg, (11)

where wii1,4 ~ N(0,At), vy ~ N(0,I). We compare the
performance of bootstrap PF and block PF with different
partition types: the proposed G-CSC partitions, the version
based on (7), Gx-CSC, and the one based on (8), Gy-CSC;
the method proposed in [10], that instead of a Granger
matrix uses a covariance matrix, cov-CSC; an oracle method
where consecutive indexes of the state space are conveniently
grouped together in blocks of the same size and kept fixed
for all time steps (called oracle); and finally, a method where
indexes of the state space are randomly grouped in blocks
of the same size (called random). They were applied with
exponentially increasing numbers of IV, particles, K = 12
blocks for each partition and with 7" = 100 the total number

of steps used in the SSM. The results of the simulations can be
seen in Table 1. The performance of the filters was evaluated

using the mean squared error (MSE) as a metric, defined as

11
difzz xqt_l'qt 2,

T 7 t=1¢=1

Lt,q
dt

Lt+1,g = Tt,q

MSE(z

where 7 € R is the mean of the trajectories of the estimated
particles. The MSE results were averaged over S = 25
independent runs for each system. We also show the MSE
standard deviation -between parentheses- over runs, to be able
to evaluate statistical significance. Finally, in Table II, we
display the mean effective sample size (ESS) across blocks,

ESSf——ZZ

t=1 k=1 tk

We can see that the bootstrap PF has a poor performance in this
complicated high-dimensional model. The block approaches
help mitigate the curse of dimensionality in all partitioning
approaches, including random partitioning. Our methods, Gx-
CSC and Gy-CSC, achieve an MSE not far from the oracle
version but higher than cov-CSC. They also outperform the
random partitioning approach. Finally, we find that the gain
in ESS of our methods with respect to all other approaches is
statistically significant.

V. CONCLUSION

In this work, we have proposed a framework for performing
inference in high-dimensional state-space models. We de-
signed a method based on Granger causality to automatically
identify structure within the latent space. The framework,
implemented in a block particle filter for concreteness in the
explanation, can be easily adapted to operate with generic local
particle filters and different proposal choices of the filters. We
also discussed possible extensions and demonstrated the ef-
fectiveness of our framework through a challenging numerical
experiment using the Lorenz 96 model.
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