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Abstract—In this paper, we propose a new algorithm for
separating geometry and texture in noisy images. The proposed
algorithm uses a novel primal-dual approach exploiting post-
composition. We show that the latter exhibits significantly better
computational performance than standard forward-backward
iterations and provides a more flexible formulation, opening the
door to future integration with proximal neural networks.

Index Terms—texture geometry image decomposition, primal-
dual approaches, variational techniques

I. INTRODUCTION

Image denoising, and more generally image restoration, has
made significant advances in recent years, with a consensus
now being reached on model-based neural network approaches
[1], [2]. However, these approaches show that the underlying
structure of variational problem and associated algorithms
are of considerable importance. In particular, designing fast
algorithms for image restoration tasks makes it then possi-
ble to obtain efficient unfolded methods [3]. In the present
contribution, our analysis focuses on the standard variational
formulation, putting the texture-geometry decomposition ap-
proach back into a sufficiently flexible framework and deriving
a suitable and efficient algorithmic implementation, leading to
solid building blocks for future unfolded framework.
State-of-the-art. In image restoration problems, one tradition-
ally assumes an image is a bounded variation function plus
some noise, leading to the very popular Rudin-Osher-Fatemi
(ROF) restoration model [4]. However, Meyer pointed out
in [5] that images may contain some strong oscillations, not
taken into account in the ROF model. Instead, images should
rather be viewed as the superimposition of three components:
geometry (bounded variation), texture (strong oscillations),
and noise. For that purpose, considering noiseless images, a
first approach to separate geometry and texture was proposed
in [6], where the minimization problem is formulated in
terms of the bounded variation operator and its dual. In that
paper, the texture and geometry components of the image
are computed using projection on convex sets, inspired by
the work of Chambolle [7]. Other approaches were also
proposed to implement this new decomposition scheme, as
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in [8] where the ROF model was modified to find the optimal
image decomposition by formally solving the Euler-Lagrange
equation. The approach detailed in [6] can be generalized
by changing the total variation into Lp-norms or wavelet
decomposition, leading to different dual norms controlling the
texture component [9]. Additionally, it can incorporate noise,
assumed to be Gaussian white [10].
Contribution. In the present paper, we first recall the gen-
eral minimization context and then show that the proposed
minimization problem can be embedded in a more general
framework. We then introduce iterations based on a forward-
backward approach, and then explain how by rewriting the
minimization problem using post-composition, the minimum
can also be found by adapting the Condat-Vũ algorithm [11],
[12]. Throughout different simulations, we emphasize that
the proposed primal-dual algorithm provides computational
gain over the forward-backward approach. The algorithmic
procedure being fast enough, it allows us to evaluate the impact
of the involved regularization parameters on the solution.
Notations. In this paper, we consider an image z of size N ×
N , X denotes RN×N , and Y = X ×X . The Euclidean norm
in R2 is denoted by ∥ · ∥2.

II. TEXTURE + GEOMETRY FORMULATION

A. Standard Formulation

Image decomposition is often performed by considering that
an image is the superimposition of some texture and cartoon
parts, the first one living in a space of oscillations and the
second being modelled as a bounded variation function [6].

To define the set of bounded variation functions, the discrete
total variation is introduced as follows:

(∀x ∈ X) J(x) =
∑

1≤i,j≤N

∥(Lx)i,j∥2. (1)

where L denotes the bi-dimensional finite differences operator.
To model the oscillations, we introduce the subspace

G = {y ∈ X,∃g ∈ Y s.t y = div(g)} , (2)
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where div denotes the discrete divergence. This space is
equipped with the norm:

∥y∥G = inf

{
∥g∥∞ = max

i,j
∥gi,j∥2, y = div(g), g ∈ Y

}
.

(3)
The subset Cµ contains the elements of G with a norm smaller
than µ. Given an image z, its decomposition into a bounded
variation function x and a texture component y is performed
by solving the following minimization problem [13]:

min
(x,y)∈X×Cµ

1

2
∥z − x− y∥22 + λJ(x). (4)

B. Duality

It is well known that [13]:

J(x) = sup
v∈C1

⟨x, v⟩X . (5)

Using the Legendre-Fenchel transformation, one obtains that
(4) can be rewritten as:

min
(x,y)∈Y

1

2
∥z − x− y∥22 + λJ(x) + J∗

( y

µ

)
. (6)

The parameter µ determines the frequency content assigned to
the texture part y: a smaller µ results in the inclusion of higher-
frequency oscillations in the texture [10]. The formulation of
the minimization problem proposed in (6) has paved the way
to a more general setting to texture and geometry separation.
Indeed, by setting p > 1 and q > 1 such that 1/p+ 1/q = 1,
we can consider the case where J and J∗ are generalized to

(J1,q, J
∗
1,q) =

∑
i,j

∥(Lx)i,j∥q, ιC1,q

 , (7)

where ι denotes the indicator function and

C1,q =

{
y ∈ X, max

i,j
∥ui,j∥p ≤ 1, div(u) = y

}
.

The standard case discussed earlier corresponds to the case
q = 2, but alternative formulations using wavelet-based dual
norms have also been explored [10].

C. Texture + Geometry + Noise Model

The previous formulation does not explicitly account for
noise. To incorporate noise, various strategies have been
proposed, among which the following proved to be particularly
efficient [10], and can be described as follows:

min
(x,y,n)∈X3

1

2
∥z−x−y−n∥22+λJ(x)+J∗

( y

µ

)
+B∗

(n
δ

)
, (8)

where B∗ is the dual norm of B(x) = ∥x∥B1
1,1

= ∥Ψx∥1,
B1

1,1 being the Besov space with all parameters equal to 1,
and corresponds to the l1-norm of the wavelet coefficients of
x (i.e., Ψ denotes the wavelet transform).

D. Comments on Existing Models and Generalization

At this stage, it is important to remark that J = ∥ · ∥1,2 ◦L,
but if q ̸= 2 in (7), projecting onto C1,q is not straightforward
in general. This motivates the design of alternative minimiza-
tion schemes that split the influence of the linear operator.

To be able to consider a wide variability of functions, we
propose to generalize the formulation using a penalty of the
form f ◦ L where f denotes a proper lower semi-continuous
convex function and L is a linear operator mapping X to Y .
This leads to the following generalized minimization problem:

min
x,y,n

1

2
∥z−x−y−n∥22+λf(Lx)+(f◦L)∗

( y

µ

)
+B∗

(n
δ

)
. (9)

This formulation provides a flexible framework that can be
adapted to different regularization terms and problem con-
straints.

III. ALGORITHMIC SOLUTIONS

This section provides numerical schemes to solve (9). The
involved functions being non-smooth it relies on proximal
schemes [14], [15]. Our main contribution is the design of a
novel algorithm based on primal-dual scheme involving post-
composition.

A. Reminder

To facilitate the reading, we remind an extended formulation
of Moreau decomposition [16], for γ, µ > 0 and f proper,
convex, lower-semi-continuous, for every x ∈ X ,

proxγf∗(·/µ)(x) = x− γ

µ
proxµ2

γ f

(
µ(γ−1x)

)
. (10)

This result is crucial for deriving efficient numerical schemes
in our framework.

B. Forward-Backward Algorithm

The most common proximal iterations to minimize (9)
rely on forward-backward algorithm, which yields for the kth
iteration to

vk = xk + yk + nk − z

yk+1 = proxγ(f◦L)∗(·/µ)(yk − γvk)

xk+1 = proxγλ(f◦L)(xk − γvk)

nk+1 = proxγB∗(·/δ)(nk − γvk).

(11)

Equivalently, using Moreau’s decomposition, this can be
rewritten as:

vk = xk + yk + nk − z

yk+1 = yk − γvk − γ

µ
proxµ2

γ f◦L

(
µ(γ−1yk − vk)

)
xk+1 = proxγλf◦L(xk − γvk)

nk+1 = nk − γvk − γ

δ
prox δ2

γ B
(δ(γ−1nk − vk)).

(12)

In that context, proxf◦L can be computed at the cost of inner
iterations. Indeed, proxf◦L(u) = u− L⊤v̂ with

v̂ = argmin
v

1

2
∥L⊤v − u∥22 + f∗(v).
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This dual minimization problem can be efficiently solved
considering FISTA iterations [17]. In the iterative scheme (11),
the convergence of the iterates to a solution of (8) is ensured
for γ < 1.99/β with β = 3 as 1

2∥z − x − y − n∥22 =
1
2∥z − [1 1 1][x, y, n]⊤∥22. Indeed, if one puts A = [1 1 1]
and f(x, y, n) = 1

2∥z − A[x, y, n]⊤∥22, then ∇f(x, y, n) =
A⊤(A[x, y, n]⊤ − z), thus ∥∇f(x, y, n)−∇f(x′, y′, n′)∥2 ≤
∥A⊤A∥2∥(x − x′, y − y′, n − n′)∥2, with A⊤A being a rank
one matrix admitting 3 as non zero eigenvalue.
Remark. The initial algorithmic procedure established in [10]
used alternating projections onto each variable. When x and
n are fixed, Equation (8) is equivalent to projecting z−x−n
onto Cµ which is done using Chambolle algorithm [7]. This
yields updates at the kth iterate:

yk+1 = prox(f◦L)∗(·/µ)(z − xk − nk)

xk+1 = proxλ(f◦L)(z − yk+1 − nk)

nk+1 = proxB∗(·/δ)(z − xk+1 − yk+1).

(13)

However, this procedure only guarantees convergence of the
objective function, not for the sequence of iterates. In the nu-
merical part, we thus focus on the standard forward-backward
procedure.

C. Post-Composition Primal-Dual Algorithm

The second algorithmic strategy considered in this work
takes advantage of the structure of (8) in order to facilitate
the handling with linear operator and avoid inner iterations
as required in the two previous schemes. Note that such a
decomposition J = f ◦ L is valid for any types of norms
introduced in Sec. II-B.

Since (f ◦ L)∗ = L∗ ▷ f∗ : t 7→ infu, L∗u=t f
∗(u), where

▷ denotes the infimal post-composition operation (see, e.g.,
[18]–[20]), the minimization problem (8) rewrites

min
x,u,n

1

2
∥z−x−L∗u−n∥22+λ(f ◦L)(x)+f∗

(
u

µ

)
+B∗

(n
δ

)
(14)

with L∗u = y, leading to the following reformulation:

Proposition 1. Equation (14) can be solved using the follow-
ing Condat-Vũ iterations:

wk = xk + L∗uk + nk − z

xk+1 = xk − τ(wk + L∗vk)

uk+1 = proxτf∗(·/µ)(uk − τLwk)

nk+1 = proxτB∗(·/δ)(nk − τwk)

vk+1 = proxσ(λf)∗(vk + σL(2xk+1 − xk)).

(15)

Proof. The problem (14) can be equivalently written as

min
X=(x,u,n)

F (X) +G(X) +H(MX),

where 

F : X 7→ 1
2∥Λ(X)− z∥2,

Λ: (x, u, n) 7→ x+ L∗u+ n

G : X 7→ f∗(uµ ) +B∗(nδ )

H : v 7→ λf(v)

M : (x, u, n) 7→ Lx.

The Condat-Vũ algorithm [11] can be applied within that
framework and reads in that case

Xk+1 = proxτG(Xk − τ∇F (Xk)− τM∗vk)

vk+1 = proxσH∗(vk + σM(2Xk+1 −Xk)).
(16)

Since
∇F : (x, u, n) 7→ Λ∗(Λ(x, u, n)− z)

with Λ∗ : y 7→ (y, Ly, y)
M∗ : v 7→ (L∗v, 0, 0)
proxτG : (x, u, n) 7→ (x, proxτf∗(·/µ)(u),proxτB∗(·/δ)(n))

proxσH∗ = proxσ(λf)∗ .

Equation (16) is equivalent to

xk+1 = xk − τ(xk + L∗uk + nk − z)− τL∗vk

uk+1 = proxτf∗(·/µ)(uk − τL(xk + L∗uk + nk − z))

nk+1 = proxτB∗(·/δ)(nk − τ(xk + L∗uk + nk − z))

vk+1 = proxσ(λf)∗(vk + σL(2xk+1 − xk)).

Using Moreau decomposition one ends up with the proposed
iterations.

In practice, iterations (15) are computed using direct for-
mulation as in the forward-backward algorithm (see Equation
(12)). Note finally that the Lipschitz constant of the data term
F is ∥Λ∥2 = (2 + ∥L∥2). In order to ensure convergence, σ
and τ must satisfy

1

τ
−σ∥L∥2 >

1

2
(2+∥L∥2) ⇔ τ <

2

2 + (1 + 2σ)∥L∥2 . (17)

IV. RESULTS

In this section we evaluate first, the algorithmic behaviour
of the proposed post-composition primal-dual algorithm com-
pared to forward-backward steps and second, based on the
proposed algorithm we analyze the impact of the regularization
parameters onto decomposition performance.

A. Computational Time Evaluation

As a preliminary experiment, we implemented the two algo-
rithms on the real 894×1400 image shown at the top Figure 1a,
where we added a Gaussian white noise. A zoomed-in view
of the region of interest, highlighted by a red frame in the
image, is shown at the bottom of Figure 1a. In this example,
we consider minimizing (9) with the following regularization
parameters: λ = 0.01, µ = 0.2 and δ = 0.01, the value for the
latter parameter being automatically computed [10]. Note that
as the image is a colored image the minimization is performed
on the three (red, green, and blue) channels independently.
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(a) (b) (c) (d)

Fig. 1: Output of post-composition primal-dual algorithm applied to a real image. Original image (a), estimated geometry (b), estimated
texture (c), and estimated noise (d). The second row is a zoom in the area highlighted by a red frame in the top-left image.

Figures 1b to 1d depict the estimated geometry, texture
and noise components obtained after convergence of the post-
composition primal-dual algorithm. Although the ground truth
is unknown, a qualitative assessment based on visual inspec-
tion shows that the geometry component consists essentially
of piecewise constant regions, while the texture component
captures fine image details (e.g., tree leaves).
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Fig. 2: Comparison of the speed of convergence of the minimization
algorithms performed on the zoom-in view as the computation with
FB was too long to process for the full image.

A comparison of the convergence speed for the two algo-
rithms is shown in Figure 2. In particular, we have imple-
mented the primal-dual algorithm for four different choices
of σ parameter in (15) (namely, σ = 0.01, 0.1, 1 and 10).
Each time, the step size τ was set to 0.9 times the upper
bound given in Equation (17). Figure 2a shows convergence in
terms of the number of iterations, while Figure 2b compares
actual computational times. Although the forward-backward
algorithm converges in very few iterations, it requires a
significantly longer computational time. Indeed, because of
the need for inner iterations to evaluate the proximal operator
in (12), every update of x and y takes longer than in the
post-composition primal-dual algorithm, where every update
in (15) involves direct computations. In addition, we found
that choosing σ = 0.1 results in the fastest convergence of the
primal-dual algorithm among the tested values.

B. Role of the Regularization Parameters and Limitations

Equipped with the fast primal-dual post-composition al-
gorithm, we can handle most exhaustive tests. To better
understand the effect of regularization parameters on the
estimates, we applied the proposed algorithm to the four toy
images shown in Figure 3a. These images share the same
geometric structure but differ in their texture patters. The
first two images have periodic textures, the second image
containing oscillations at twice the frequency of the first
image. The last two textures are real images taken from the
Brodatz’s texture database [21]. In these experiments, the noise
regularisation parameter δ was set to δ = 0.01, while the
geometry and texture regularization parameters λ and µ were
varied. As a performance index, we computed the signal-to-
noise ratios (SNR) for the geometry and texture components
across different pairs of regularization parameters (λ, µ). The
resulting SNR maps are shown in Figures 3b and 3c.

We observe that images with faster oscillations require a
smaller µ to accurately capture the texture component. We
also notice that the SNR of the texture component is only
weakly dependent on λ. However, µ and λ cannot be chosen
separately. We manually determined an optimal pair of regu-
larization parameters, highlighted by red squares in the SNR
maps. Figures 3d to 3f show the estimated geometry, texture
and noise components for these optimal parameter values.
As the texture complexity increases, even by choosing the
optimal (λ, µ) parameters, the separation between geometry
and texture becomes less accurate. This suggests the need
for future improvements in optimization strategies to enhance
decomposition quality.

V. CONCLUSION AND PERSPECTIVE

In this work, we propose a new and faster algorithmic
scheme for texture and geometry decomposition, leveraging
post-composition primal-dual iterations. This work paves the
way to extended analysis on the choice of L for color imagery,
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Fig. 3: Quality of image decomposition in terms of SNR for four test images, evaluated as a function of the regularization parameters. Column
(a) shows the original images, while columns (b) and (c) display the SNR maps for the geometry and texture components, respectively. The
regularization parameters, selected manually, are highlighted with red squares. The corresponding estimated geometry, texture, and noise
components are presented in columns (d) to (f).

but also to the design of unfolded schemes in order to learn
more suitable norms for texture and geometry decomposition.
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Decomposition into a Bounded Variation Component and an Oscillating
Component,” Journal of Mathematical Imaging and Vision, vol. 22,
no. 1, pp. 71–88, 2005.

[7] A. Chambolle, “An Algorithm for Total Variation Minimization and
Applications,” J. Math. Imag. Vis., vol. 20, no. 1, pp. 89–97, 2004.

[8] L. A. Vese and S. J. Osher, “Modeling Textures with Total Variation
Minimization and Oscillating Patterns in Image Processing,” J. Sci.
Comput., vol. 19, no. 1, pp. 553–572, 2003.

[9] L. M. Briceño-Arias, P. L. Combettes, J.-C. Pesquet, and N. Pustelnik,
“Proximal algorithms for multicomponent image recovery problems,” J.
Math. Imag. Vis., vol. 41, pp. 3–22, Sep. 2011.

[10] J.-F. Aujol and A. Chambolle, “Dual norms and image decomposition
models,” International journal of computer vision, vol. 63, pp. 85–104,
2005.

[11] L. Condat, “A primal–dual splitting method for convex optimization
involving Lipschitzian, proximable and linear composite terms,” Journal
of Opt. Theory and Applications, vol. 158, no. 2, pp. 460–479, 2013.
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